BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

127 related articles for article (PubMed ID: 2611224)

  • 1. Vanadium K-edge X-ray absorption spectroscopy of bromoperoxidase from Ascophyllum nodosum.
    Arber JM; de Boer E; Garner CD; Hasnain SS; Wever R
    Biochemistry; 1989 Sep; 28(19):7968-73. PubMed ID: 2611224
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Vanadium K-edge absorption spectrum of bromoperoxidase from Ascophyllum nodosum.
    Hormes J; Kuetgens U; Chauvistre R; Schreiber W; Anders N; Vilter H; Rehder D; Weidemann C
    Biochim Biophys Acta; 1988 Oct; 956(3):293-9. PubMed ID: 3167074
    [TBL] [Abstract][Full Text] [Related]  

  • 3. High-resolution XANES studies on vanadium-containing haloperoxidase: pH-dependence and substrate binding.
    Küsthardt U; Hedman B; Hodgson KO; Hahn R; Vilter H
    FEBS Lett; 1993 Aug; 329(1-2):5-8. PubMed ID: 8354407
    [TBL] [Abstract][Full Text] [Related]  

  • 4. The brown alga Ascophyllum nodosum contains two different vanadium bromoperoxidases.
    Krenn BE; Tromp MG; Wever R
    J Biol Chem; 1989 Nov; 264(32):19287-92. PubMed ID: 2553736
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Bromine K-edge EXAFS studies of bromide binding to bromoperoxidase from Ascophyllum nodosum.
    Dau H; Dittmer J; Epple M; Hanss J; Kiss E; Rehder D; Schulzke C; Vilter H
    FEBS Lett; 1999 Aug; 457(2):237-40. PubMed ID: 10471786
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Substrate binding to vanadate-dependent bromoperoxidase from Ascophyllum nodosum: a vanadium K-edge XAS approach.
    Christmann U; Dau H; Haumann M; Kiss E; Liebisch P; Rehder D; Santoni G; Schulzke C
    Dalton Trans; 2004 Aug; (16):2534-40. PubMed ID: 15303169
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Sulfoxidation mechanism of vanadium bromoperoxidase from Ascophyllum nodosum. Evidence for direct oxygen transfer catalysis.
    ten Brink HB; Schoemaker HE; Wever R
    Eur J Biochem; 2001 Jan; 268(1):132-8. PubMed ID: 11121113
    [TBL] [Abstract][Full Text] [Related]  

  • 8. The reaction mechanism of the novel vanadium-bromoperoxidase. A steady-state kinetic analysis.
    de Boer E; Wever R
    J Biol Chem; 1988 Sep; 263(25):12326-32. PubMed ID: 3410844
    [TBL] [Abstract][Full Text] [Related]  

  • 9. A (17)O NMR study of peroxide binding to the active centre of bromoperoxidase from Ascophyllum nodosum.
    Casný M; Rehder D; Schmidt H; Vilter H; Conte V
    J Inorg Biochem; 2000 May; 80(1-2):157-60. PubMed ID: 10885479
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Water and bromide in the active center of vanadate-dependent haloperoxidases.
    Rehder D; Schulzke C; Dau H; Meinke C; Hanss J; Epple M
    J Inorg Biochem; 2000 May; 80(1-2):115-21. PubMed ID: 10885471
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Characterization of vanadium bromoperoxidase from Macrocystis and Fucus: reactivity of vanadium bromoperoxidase toward acyl and alkyl peroxides and bromination of amines.
    Soedjak HS; Butler A
    Biochemistry; 1990 Aug; 29(34):7974-81. PubMed ID: 2261454
    [TBL] [Abstract][Full Text] [Related]  

  • 12. X-ray structure determination of a vanadium-dependent haloperoxidase from Ascophyllum nodosum at 2.0 A resolution.
    Weyand M; Hecht H; Kiess M; Liaud M; Vilter H; Schomburg D
    J Mol Biol; 1999 Oct; 293(3):595-611. PubMed ID: 10543953
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Mechanism of dioxygen formation catalyzed by vanadium bromoperoxidase from Macrocystis pyrifera and Fucus distichus: steady state kinetic analysis and comparison to the mechanism of V-BrPO from Ascophyllum nodosum.
    Soedjak HS; Butler A
    Biochim Biophys Acta; 1991 Aug; 1079(1):1-7. PubMed ID: 1888757
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Mechanistic investigations of the novel non-heme vanadium bromoperoxidases. Evidence for singlet oxygen production.
    Everett RR; Kanofsky JR; Butler A
    J Biol Chem; 1990 Mar; 265(9):4908-14. PubMed ID: 2318874
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Some structural aspects of vanadium bromoperoxidase from Ascophyllum nodosum.
    Tromp MG; Olafsson G; Krenn BE; Wever R
    Biochim Biophys Acta; 1990 Sep; 1040(2):192-8. PubMed ID: 2400770
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Structure and function of vanadium-containing bromoperoxidases.
    Wever R; Krenn BE; De Boer E; Offenberg H; Plat H
    Prog Clin Biol Res; 1988; 274():477-93. PubMed ID: 3406034
    [TBL] [Abstract][Full Text] [Related]  

  • 17. X-ray structure of a vanadium-containing enzyme: chloroperoxidase from the fungus Curvularia inaequalis.
    Messerschmidt A; Wever R
    Proc Natl Acad Sci U S A; 1996 Jan; 93(1):392-6. PubMed ID: 8552646
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Vanadium K-edge XAS studies on the native and peroxo-forms of vanadium chloroperoxidase from Curvularia inaequalis.
    Renirie R; Charnock JM; Garner CD; Wever R
    J Inorg Biochem; 2010 Jun; 104(6):657-64. PubMed ID: 20346515
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Isolation and characterization of vanadium bromoperoxidase from a marine macroalga, Ecklonia stolonifera.
    Hara I; Sakurai T
    J Inorg Biochem; 1998 Oct; 72(1-2):23-8. PubMed ID: 9861726
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Modeling the catalytic site of vanadium bromoperoxidase: synthesis and structural characterization of intramolecularly H-bonded vanadium(V) oxoperoxo complexes, [VO(O(2))((NH)2pyg(2))]K and [VO(O(2))((BrNH)2pyg(2))]K.
    Kimblin C; Bu X; Butler A
    Inorg Chem; 2002 Jan; 41(2):161-3. PubMed ID: 11800602
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.