These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
2. Introduction of a cysteine protease active site into trypsin. Higaki JN; Evnin LB; Craik CS Biochemistry; 1989 Nov; 28(24):9256-63. PubMed ID: 2611227 [TBL] [Abstract][Full Text] [Related]
3. A theoretical study of the active sites of papain and S195C rat trypsin: implications for the low reactivity of mutant serine proteinases. Beveridge AJ Protein Sci; 1996 Jul; 5(7):1355-65. PubMed ID: 8819168 [TBL] [Abstract][Full Text] [Related]
4. Crystal structure of rat trypsin-S195C at -150 degrees C. Analysis of low activity of recombinant and semisynthetic thiol proteases. Wilke ME; Higaki JN; Craik CS; Fletterick RJ J Mol Biol; 1991 Jun; 219(3):511-23. PubMed ID: 1904942 [TBL] [Abstract][Full Text] [Related]
5. Studies of specificity and catalysis in trypsin by structural analysis of site-directed mutants. Sprang SR; Fletterick RJ; Gráf L; Rutter WJ; Craik CS Crit Rev Biotechnol; 1988; 8(3):225-36. PubMed ID: 3063392 [TBL] [Abstract][Full Text] [Related]
7. Structural leitmotif and functional variations of the structural catalytic core in (chymo)trypsin-like serine/cysteine fold proteinases. Denesyuk AI; Permyakov SE; Johnson MS; Permyakov EA; Uversky VN; Denessiouk K Int J Biol Macromol; 2021 May; 179():601-609. PubMed ID: 33713772 [TBL] [Abstract][Full Text] [Related]
8. A novel serine protease inhibition motif involving a multi-centered short hydrogen bonding network at the active site. Katz BA; Elrod K; Luong C; Rice MJ; Mackman RL; Sprengeler PA; Spencer J; Hataye J; Janc J; Link J; Litvak J; Rai R; Rice K; Sideris S; Verner E; Young W J Mol Biol; 2001 Apr; 307(5):1451-86. PubMed ID: 11292354 [TBL] [Abstract][Full Text] [Related]
9. Neutron and X-ray crystallographic analysis of Achromobacter protease I at pD 8.0: protonation states and hydration structure in the free-form. Ohnishi Y; Yamada T; Kurihara K; Tanaka I; Sakiyama F; Masaki T; Niimura N Biochim Biophys Acta; 2013 Aug; 1834(8):1642-7. PubMed ID: 23714114 [TBL] [Abstract][Full Text] [Related]
10. Structure-function relationships in the cysteine proteinases actinidin, papain and papaya proteinase omega. Three-dimensional structure of papaya proteinase omega deduced by knowledge-based modelling and active-centre characteristics determined by two-hydronic-state reactivity probe kinetics and kinetics of catalysis. Topham CM; Salih E; Frazao C; Kowlessur D; Overington JP; Thomas M; Brocklehurst SM; Patel M; Thomas EW; Brocklehurst K Biochem J; 1991 Nov; 280 ( Pt 1)(Pt 1):79-92. PubMed ID: 1741760 [TBL] [Abstract][Full Text] [Related]
11. Crystal structure of a catalytic antibody with a serine protease active site. Zhou GW; Guo J; Huang W; Fletterick RJ; Scanlan TS Science; 1994 Aug; 265(5175):1059-64. PubMed ID: 8066444 [TBL] [Abstract][Full Text] [Related]
12. Crystal structures of alpha-lytic protease complexes with irreversibly bound phosphonate esters. Bone R; Sampson NS; Bartlett PA; Agard DA Biochemistry; 1991 Feb; 30(8):2263-72. PubMed ID: 1998685 [TBL] [Abstract][Full Text] [Related]
13. The three-dimensional structure of Asn102 mutant of trypsin: role of Asp102 in serine protease catalysis. Sprang S; Standing T; Fletterick RJ; Stroud RM; Finer-Moore J; Xuong NH; Hamlin R; Rutter WJ; Craik CS Science; 1987 Aug; 237(4817):905-9. PubMed ID: 3112942 [TBL] [Abstract][Full Text] [Related]
14. The nature of general base-general acid catalysis in serine proteases. Polgár L; Bender ML Proc Natl Acad Sci U S A; 1969 Dec; 64(4):1335-42. PubMed ID: 5271756 [TBL] [Abstract][Full Text] [Related]
15. Crystal structures of rat anionic trypsin complexed with the protein inhibitors APPI and BPTI. Perona JJ; Tsu CA; Craik CS; Fletterick RJ J Mol Biol; 1993 Apr; 230(3):919-33. PubMed ID: 7683059 [TBL] [Abstract][Full Text] [Related]
16. Viral cysteine proteases are homologous to the trypsin-like family of serine proteases: structural and functional implications. Bazan JF; Fletterick RJ Proc Natl Acad Sci U S A; 1988 Nov; 85(21):7872-6. PubMed ID: 3186696 [TBL] [Abstract][Full Text] [Related]
17. Probing the mechanism of hamster arylamine N-acetyltransferase 2 acetylation by active site modification, site-directed mutagenesis, and pre-steady state and steady state kinetic studies. Wang H; Vath GM; Gleason KJ; Hanna PE; Wagner CR Biochemistry; 2004 Jun; 43(25):8234-46. PubMed ID: 15209520 [TBL] [Abstract][Full Text] [Related]
18. Structure of the human cytomegalovirus protease catalytic domain reveals a novel serine protease fold and catalytic triad. Chen P; Tsuge H; Almassy RJ; Gribskov CL; Katoh S; Vanderpool DL; Margosiak SA; Pinko C; Matthews DA; Kan CC Cell; 1996 Sep; 86(5):835-43. PubMed ID: 8797829 [TBL] [Abstract][Full Text] [Related]
19. NBCZone: Universal three-dimensional construction of eleven amino acids near the catalytic nucleophile and base in the superfamily of (chymo)trypsin-like serine fold proteases. Denesyuk AI; Johnson MS; Salo-Ahen OMH; Uversky VN; Denessiouk K Int J Biol Macromol; 2020 Jun; 153():399-411. PubMed ID: 32151723 [TBL] [Abstract][Full Text] [Related]
20. Refined atomic model of wheat serine carboxypeptidase II at 2.2-A resolution. Liao DI; Breddam K; Sweet RM; Bullock T; Remington SJ Biochemistry; 1992 Oct; 31(40):9796-812. PubMed ID: 1390755 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]