BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

291 related articles for article (PubMed ID: 26112282)

  • 1. Amyloid-like fibrils formed from intrinsically disordered caseins: physicochemical and nanomechanical properties.
    Pan K; Zhong Q
    Soft Matter; 2015 Aug; 11(29):5898-904. PubMed ID: 26112282
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Kinetics of fibril formation of bovine kappa-casein indicate a conformational rearrangement as a critical step in the process.
    Leonil J; Henry G; Jouanneau D; Delage MM; Forge V; Putaux JL
    J Mol Biol; 2008 Sep; 381(5):1267-80. PubMed ID: 18616951
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Fibrillar beta-lactoglobulin gels: Part 1. Fibril formation and structure.
    Gosal WS; Clark AH; Ross-Murphy SB
    Biomacromolecules; 2004; 5(6):2408-19. PubMed ID: 15530058
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Formation of β-lactoglobulin nanofibrils by microwave heating gives a peptide composition different from conventional heating.
    Hettiarachchi CA; Melton LD; Gerrard JA; Loveday SM
    Biomacromolecules; 2012 Sep; 13(9):2868-80. PubMed ID: 22877308
    [TBL] [Abstract][Full Text] [Related]  

  • 5. The dissociated form of kappa-casein is the precursor to its amyloid fibril formation.
    Ecroyd H; Thorn DC; Liu Y; Carver JA
    Biochem J; 2010 Jul; 429(2):251-60. PubMed ID: 20441567
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Bridging the gap between the nanostructural organization and macroscopic interfacial rheology of amyloid fibrils at liquid interfaces.
    Jordens S; Rühs PA; Sieber C; Isa L; Fischer P; Mezzenga R
    Langmuir; 2014 Aug; 30(33):10090-7. PubMed ID: 25100189
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Mechanical properties of amyloid-like fibrils defined by secondary structures.
    Bortolini C; Jones NC; Hoffmann SV; Wang C; Besenbacher F; Dong M
    Nanoscale; 2015 May; 7(17):7745-52. PubMed ID: 25839069
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Measurement of intrinsic properties of amyloid fibrils by the peak force QNM method.
    Adamcik J; Lara C; Usov I; Jeong JS; Ruggeri FS; Dietler G; Lashuel HA; Hamley IW; Mezzenga R
    Nanoscale; 2012 Aug; 4(15):4426-9. PubMed ID: 22688679
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Methionine oxidation enhances κ-casein amyloid fibril formation.
    Koudelka T; Dehle FC; Musgrave IF; Hoffmann P; Carver JA
    J Agric Food Chem; 2012 Apr; 60(16):4144-55. PubMed ID: 22443319
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Multimodal Spectroscopic Study of Amyloid Fibril Polymorphism.
    VandenAkker CC; Schleeger M; Bruinen AL; Deckert-Gaudig T; Velikov KP; Heeren RM; Deckert V; Bonn M; Koenderink GH
    J Phys Chem B; 2016 Sep; 120(34):8809-17. PubMed ID: 27487391
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Coaggregation of κ-Casein and β-Lactoglobulin Produces Morphologically Distinct Amyloid Fibrils.
    Raynes JK; Day L; Crepin P; Horrocks MH; Carver JA
    Small; 2017 Apr; 13(14):. PubMed ID: 28146312
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Growth kinetics of amyloid-like fibrils derived from individual subunits of soy β-conglycinin.
    Wang JM; Yang XQ; Yin SW; Yuan DB; Xia N; Qi JR
    J Agric Food Chem; 2011 Oct; 59(20):11270-7. PubMed ID: 21919519
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Amyloid fibril formation by α
    Bahraminejad E; Paliwal D; Sunde M; Holt C; Carver JA; Thorn DC
    Biochim Biophys Acta Proteins Proteom; 2022 Nov; 1870(11-12):140854. PubMed ID: 36087849
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Structural and nanomechanical comparison of epitaxially and solution-grown amyloid β25-35 fibrils.
    Murvai Ü; Somkuti J; Smeller L; Penke B; Kellermayer MS
    Biochim Biophys Acta; 2015 May; 1854(5):327-32. PubMed ID: 25600136
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Amyloid fibril formation by bovine milk alpha s2-casein occurs under physiological conditions yet is prevented by its natural counterpart, alpha s1-casein.
    Thorn DC; Ecroyd H; Sunde M; Poon S; Carver JA
    Biochemistry; 2008 Mar; 47(12):3926-36. PubMed ID: 18302322
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Influence of the β-sheet content on the mechanical properties of aggregates during amyloid fibrillization.
    Ruggeri FS; Adamcik J; Jeong JS; Lashuel HA; Mezzenga R; Dietler G
    Angew Chem Int Ed Engl; 2015 Feb; 54(8):2462-6. PubMed ID: 25588987
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Amyloid fibril formation by bovine milk kappa-casein and its inhibition by the molecular chaperones alphaS- and beta-casein.
    Thorn DC; Meehan S; Sunde M; Rekas A; Gras SL; MacPhee CE; Dobson CM; Wilson MR; Carver JA
    Biochemistry; 2005 Dec; 44(51):17027-36. PubMed ID: 16363816
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Evidence for stepwise formation of amyloid fibrils by the mouse prion protein.
    Jain S; Udgaonkar JB
    J Mol Biol; 2008 Oct; 382(5):1228-41. PubMed ID: 18687339
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Determination of the elastic modulus of β-lactoglobulin amyloid fibrils by measuring the Debye-Waller factor.
    Sasaki N; Saitoh Y; Sharma RK; Furusawa K
    Int J Biol Macromol; 2016 Nov; 92():240-245. PubMed ID: 27411296
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Structural-rheological characteristics of Chaplin E peptide at the air/water interface; a comparison with β-lactoglobulin and β-casein.
    Dokouhaki M; Prime EL; Qiao GG; Kasapis S; Day L; Gras SL
    Int J Biol Macromol; 2020 Feb; 144():742-750. PubMed ID: 31837361
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 15.