BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

265 related articles for article (PubMed ID: 26112379)

  • 1. Validation of photoplethysmography as a method to detect heart rate during rest and exercise.
    Spierer DK; Rosen Z; Litman LL; Fujii K
    J Med Eng Technol; 2015; 39(5):264-71. PubMed ID: 26112379
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Validity of heart rate measurements by the Garmin Forerunner 225 at different walking intensities.
    Claes J; Buys R; Avila A; Finlay D; Kennedy A; Guldenring D; Budts W; Cornelissen V
    J Med Eng Technol; 2017 Aug; 41(6):480-485. PubMed ID: 28675070
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Towards Photoplethysmography-Based Estimation of Instantaneous Heart Rate During Physical Activity.
    Jarchi D; Casson AJ
    IEEE Trans Biomed Eng; 2017 Sep; 64(9):2042-2053. PubMed ID: 28212075
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Accurate Heart Rate Monitoring During Physical Exercises Using PPG.
    Temko A
    IEEE Trans Biomed Eng; 2017 Sep; 64(9):2016-2024. PubMed ID: 28278454
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Development of the irregular pulse detection method in daily life using wearable photoplethysmographic sensor.
    Suzuki T; Kameyama K; Tamura T
    Annu Int Conf IEEE Eng Med Biol Soc; 2009; 2009():6080-3. PubMed ID: 19965254
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Accuracy of PurePulse photoplethysmography technology of Fitbit Charge 2 for assessment of heart rate during sleep.
    Haghayegh S; Khoshnevis S; Smolensky MH; Diller KR
    Chronobiol Int; 2019 Jul; 36(7):927-933. PubMed ID: 30990098
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Mobile monitoring with wearable photoplethysmographic biosensors.
    Asada HH; Shaltis P; Reisner A; Rhee S; Hutchinson RC
    IEEE Eng Med Biol Mag; 2003; 22(3):28-40. PubMed ID: 12845817
    [No Abstract]   [Full Text] [Related]  

  • 8. Wireless photoplethysmographic device for heart rate variability signal acquisition and analysis.
    Reyes I; Nazeran H; Franco M; Haltiwanger E
    Annu Int Conf IEEE Eng Med Biol Soc; 2012; 2012():2092-5. PubMed ID: 23366333
    [TBL] [Abstract][Full Text] [Related]  

  • 9. In-ear vital signs monitoring using a novel microoptic reflective sensor.
    Vogel S; Hülsbusch M; Hennig T; Blazek V; Leonhardt S
    IEEE Trans Inf Technol Biomed; 2009 Nov; 13(6):882-9. PubMed ID: 19846385
    [TBL] [Abstract][Full Text] [Related]  

  • 10. TROIKA: a general framework for heart rate monitoring using wrist-type photoplethysmographic signals during intensive physical exercise.
    Zhang Z; Pi Z; Liu B
    IEEE Trans Biomed Eng; 2015 Feb; 62(2):522-31. PubMed ID: 25252274
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Validity and reliability of Polar® RS800CX heart rate monitor, measuring heart rate in dogs during standing position and at trot on a treadmill.
    Essner A; Sjöström R; Ahlgren E; Lindmark B
    Physiol Behav; 2013 Apr; 114-115():1-5. PubMed ID: 23499770
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Accuracy of an infrared LED device to measure heart rate and energy expenditure during rest and exercise.
    Lee CM; Gorelick M; Mendoza A
    J Sports Sci; 2011 Dec; 29(15):1645-53. PubMed ID: 21995327
    [TBL] [Abstract][Full Text] [Related]  

  • 13. A multi-channel opto-electronic sensor to accurately monitor heart rate against motion artefact during exercise.
    Alzahrani A; Hu S; Azorin-Peris V; Barrett L; Esliger D; Hayes M; Akbare S; Achart J; Kuoch S
    Sensors (Basel); 2015 Oct; 15(10):25681-702. PubMed ID: 26473860
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Where to wear accelerometers to measure physical activity in people?
    Thaler-Kall K; Tusker F; Hermsdörfer J; Gorzelniak L; Horsch A
    Stud Health Technol Inform; 2013; 192():1045. PubMed ID: 23920819
    [TBL] [Abstract][Full Text] [Related]  

  • 15. An Automatic User-Adapted Physical Activity Classification Method Using Smartphones.
    Li P; Wang Y; Tian Y; Zhou TS; Li JS
    IEEE Trans Biomed Eng; 2017 Mar; 64(3):706-714. PubMed ID: 27249822
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Can Wearable Devices Accurately Measure Heart Rate Variability? A Systematic Review.
    Georgiou K; Larentzakis AV; Khamis NN; Alsuhaibani GI; Alaska YA; Giallafos EJ
    Folia Med (Plovdiv); 2018 Mar; 60(1):7-20. PubMed ID: 29668452
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Reliability and validity of a smartphone pulse rate application for the assessment of resting and elevated pulse rate.
    Mitchell K; Graff M; Hedt C; Simmons J
    Physiother Theory Pract; 2016 Aug; 32(6):494-499. PubMed ID: 27459148
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Development of real-time motion artifact reduction algorithm for a wearable photoplethysmography.
    Han H; Kim MJ; Kim J
    Annu Int Conf IEEE Eng Med Biol Soc; 2007; 2007():1538-41. PubMed ID: 18002262
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Validation of a Standalone Smartphone Application for Measuring Heart Rate Using Imaging Photoplethysmography.
    Poh MZ; Poh YC
    Telemed J E Health; 2017 Aug; 23(8):678-683. PubMed ID: 28140834
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Validity of Wrist-Worn photoplethysmography devices to measure heart rate: A systematic review and meta-analysis.
    Zhang Y; Weaver RG; Armstrong B; Burkart S; Zhang S; Beets MW
    J Sports Sci; 2020 Sep; 38(17):2021-2034. PubMed ID: 32552580
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 14.