BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

128 related articles for article (PubMed ID: 26113216)

  • 1. Engineering substrate specificity of succinic semialdehyde reductase (AKR7A5) for efficient conversion of levulinic acid to 4-hydroxyvaleric acid.
    Yeon YJ; Park HY; Yoo YJ
    J Biotechnol; 2015 Sep; 210():38-43. PubMed ID: 26113216
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Enzymatic reduction of levulinic acid by engineering the substrate specificity of 3-hydroxybutyrate dehydrogenase.
    Yeon YJ; Park HY; Yoo YJ
    Bioresour Technol; 2013 Apr; 134():377-80. PubMed ID: 23489571
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Crystal structure of mouse succinic semialdehyde reductase AKR7A5: structural basis for substrate specificity.
    Zhu X; Lapthorn AJ; Ellis EM
    Biochemistry; 2006 Feb; 45(6):1562-70. PubMed ID: 16460003
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Engineering the lva operon and Optimization of Culture Conditions for Enhanced Production of 4-Hydroxyvalerate from Levulinic Acid in Pseudomonas putida KT2440.
    Sathesh-Prabu C; Lee SK
    J Agric Food Chem; 2019 Mar; 67(9):2540-2546. PubMed ID: 30773878
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Trp266 determines the binding specificity of a porcine aflatoxin B₁ aldehyde reductase for aflatoxin B₁-dialdehyde.
    Wu J; Xu W; Zhang C; Chang Q; Tang X; Li K; Deng Y
    Biochem Pharmacol; 2013 Nov; 86(9):1357-65. PubMed ID: 24008121
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Chemoenzymatic valorization of agricultural wastes into 4-hydroxyvaleric acid via levulinic acid.
    Moon M; Yeon YJ; Park HJ; Park J; Park GW; Kim GH; Lee JP; Lee D; Lee JS; Min K
    Bioresour Technol; 2021 Oct; 337():125479. PubMed ID: 34320759
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Novel Aldo-Keto Reductases for the Biocatalytic Conversion of 3-Hydroxybutanal to 1,3-Butanediol: Structural and Biochemical Studies.
    Kim T; Flick R; Brunzelle J; Singer A; Evdokimova E; Brown G; Joo JC; Minasov GA; Anderson WF; Mahadevan R; Savchenko A; Yakunin AF
    Appl Environ Microbiol; 2017 Apr; 83(7):. PubMed ID: 28130301
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Characterisation of a novel mouse liver aldo-keto reductase AKR7A5.
    Hinshelwood A; McGarvie G; Ellis E
    FEBS Lett; 2002 Jul; 523(1-3):213-8. PubMed ID: 12123834
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Activity improvement of a Kluyveromyces lactis aldo-keto reductase KlAKR via rational design.
    Luo X; Wang YJ; Shen W; Zheng YG
    J Biotechnol; 2016 Apr; 224():20-6. PubMed ID: 26959479
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Microbial and enzymatic conversion of levulinic acid, an alternative building block to fermentable sugars from cellulosic biomass.
    Habe H; Sato Y; Kirimura K
    Appl Microbiol Biotechnol; 2020 Sep; 104(18):7767-7775. PubMed ID: 32770274
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Levulinic Acid Biorefineries: New Challenges for Efficient Utilization of Biomass.
    Pileidis FD; Titirici MM
    ChemSusChem; 2016 Mar; 9(6):562-82. PubMed ID: 26847212
    [TBL] [Abstract][Full Text] [Related]  

  • 12. High-Level Production of 4-Hydroxyvalerate from Levulinic Acid via Whole-Cell Biotransformation Decoupled from Cell Metabolism.
    Kim D; Sathesh-Prabu C; JooYeon Y; Lee SK
    J Agric Food Chem; 2019 Sep; 67(38):10678-10684. PubMed ID: 31475535
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Identification of amino acid residues involved in substrate recognition of L-xylulose reductase by site-directed mutagenesis.
    Ishikura S; Isaji T; Usami N; Nakagawa J; El-Kabbani O; Hara A
    Chem Biol Interact; 2003 Feb; 143-144():543-50. PubMed ID: 12604240
    [TBL] [Abstract][Full Text] [Related]  

  • 14. The C-terminal loop of aldehyde reductase determines the substrate and inhibitor specificity.
    Barski OA; Gabbay KH; Bohren KM
    Biochemistry; 1996 Nov; 35(45):14276-80. PubMed ID: 8916913
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Reversal of coenzyme specificity and improvement of catalytic efficiency of Pichia stipitis xylose reductase by rational site-directed mutagenesis.
    Zeng QK; Du HL; Wang JF; Wei DQ; Wang XN; Li YX; Lin Y
    Biotechnol Lett; 2009 Jul; 31(7):1025-9. PubMed ID: 19330484
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Aldehyde reductase: the role of C-terminal residues in defining substrate and cofactor specificities.
    Rees-Milton KJ; Jia Z; Green NC; Bhatia M; El-Kabbani O; Flynn TG
    Arch Biochem Biophys; 1998 Jul; 355(2):137-44. PubMed ID: 9675019
    [TBL] [Abstract][Full Text] [Related]  

  • 17. YqhD: a broad-substrate range aldehyde reductase with various applications in production of biorenewable fuels and chemicals.
    Jarboe LR
    Appl Microbiol Biotechnol; 2011 Jan; 89(2):249-57. PubMed ID: 20924577
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Selective conversion of cellulose in corncob residue to levulinic acid in an aluminum trichloride-sodium chloride system.
    Li J; Jiang Z; Hu L; Hu C
    ChemSusChem; 2014 Sep; 7(9):2482-8. PubMed ID: 25045141
    [TBL] [Abstract][Full Text] [Related]  

  • 19. A novel NADPH-dependent aldehyde reductase gene from Saccharomyces cerevisiae NRRL Y-12632 involved in the detoxification of aldehyde inhibitors derived from lignocellulosic biomass conversion.
    Liu ZL; Moon J
    Gene; 2009 Oct; 446(1):1-10. PubMed ID: 19577617
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Identification of a determinant for strict NADP(H)-specificity and high sensitivity to mixed-type steroid inhibitor of rabbit aldo-keto reductase 1C33 by site-directed mutagenesis.
    Endo S; Matsunaga T; Ikari A; El-Kabbani O; Hara A; Kitade Y
    Arch Biochem Biophys; 2015 Mar; 569():19-25. PubMed ID: 25660042
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.