These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

102 related articles for article (PubMed ID: 26113216)

  • 41. Structural and kinetic determinants of aldehyde reduction by aldose reductase.
    Srivastava S; Watowich SJ; Petrash JM; Srivastava SK; Bhatnagar A
    Biochemistry; 1999 Jan; 38(1):42-54. PubMed ID: 9890881
    [TBL] [Abstract][Full Text] [Related]  

  • 42. Strategic manipulation of an industrial biocatalyst--evolution of a cephalosporin C acylase.
    Conti G; Pollegioni L; Molla G; Rosini E
    FEBS J; 2014 May; 281(10):2443-55. PubMed ID: 24684708
    [TBL] [Abstract][Full Text] [Related]  

  • 43. Towards the computational design and engineering of enzyme enantioselectivity: A case study by a carbonyl reductase from Gluconobacter oxydans.
    Deng J; Yao Z; Chen K; Yuan YA; Lin J; Wei D
    J Biotechnol; 2016 Jan; 217():31-40. PubMed ID: 26590330
    [TBL] [Abstract][Full Text] [Related]  

  • 44. Production of sugars and levulinic acid from marine biomass Gelidium amansii.
    Jeong GT; Park DH
    Appl Biochem Biotechnol; 2010 May; 161(1-8):41-52. PubMed ID: 19830598
    [TBL] [Abstract][Full Text] [Related]  

  • 45. High-titer production of monomeric hydroxyvalerates from levulinic acid in Pseudomonas putida.
    Martin CH; Prather KL
    J Biotechnol; 2009 Jan; 139(1):61-7. PubMed ID: 18938201
    [TBL] [Abstract][Full Text] [Related]  

  • 46. Construction of various mutants of xylose metabolizing enzymes for efficient conversion of biomass to ethanol.
    Saleh AA; Watanabe S; Annaluru N; Kodaki T; Makino K
    Nucleic Acids Symp Ser (Oxf); 2006; (50):279-80. PubMed ID: 17150926
    [TBL] [Abstract][Full Text] [Related]  

  • 47. A computational approach to enzyme design: predicting ω-aminotransferase catalytic activity using docking and MM-GBSA scoring.
    Sirin S; Kumar R; Martinez C; Karmilowicz MJ; Ghosh P; Abramov YA; Martin V; Sherman W
    J Chem Inf Model; 2014 Aug; 54(8):2334-46. PubMed ID: 25005922
    [TBL] [Abstract][Full Text] [Related]  

  • 48. A chemo-enzymatic route to synthesize (S)-γ-valerolactone from levulinic acid.
    Götz K; Liese A; Ansorge-Schumacher M; Hilterhaus L
    Appl Microbiol Biotechnol; 2013 May; 97(9):3865-73. PubMed ID: 23296499
    [TBL] [Abstract][Full Text] [Related]  

  • 49. Virtual screening of mandelate racemase mutants with enhanced activity based on binding energy in the transition state.
    Gu J; Liu M; Guo F; Xie W; Lu W; Ye L; Chen Z; Yuan S; Yu H
    Enzyme Microb Technol; 2014 Feb; 55():121-7. PubMed ID: 24411454
    [TBL] [Abstract][Full Text] [Related]  

  • 50. Analysis of human cytochrome P450 2C8 substrate specificity using a substrate pharmacophore and site-directed mutants.
    Melet A; Marques-Soares C; Schoch GA; Macherey AC; Jaouen M; Dansette PM; Sari MA; Johnson EF; Mansuy D
    Biochemistry; 2004 Dec; 43(49):15379-92. PubMed ID: 15581350
    [TBL] [Abstract][Full Text] [Related]  

  • 51. Substrate-imprinted docking of Agrobacterium tumefaciens uronate dehydrogenase for increased substrate selectivity.
    Murugan A; Prathiviraj R; Mothay D; Chellapandi P
    Int J Biol Macromol; 2019 Nov; 140():1214-1225. PubMed ID: 31472210
    [TBL] [Abstract][Full Text] [Related]  

  • 52. A Single Mutation Increases the Activity and Stability of Pectobacterium carotovorum Nitrile Reductase.
    Zhou Z; Li M; Xu JH; Zhang ZJ
    Chembiochem; 2018 Mar; 19(5):521-526. PubMed ID: 29215184
    [TBL] [Abstract][Full Text] [Related]  

  • 53. Improvement of thermostable aldehyde dehydrogenase by directed evolution for application in Synthetic Cascade Biomanufacturing.
    Steffler F; Guterl JK; Sieber V
    Enzyme Microb Technol; 2013 Oct; 53(5):307-14. PubMed ID: 24034429
    [TBL] [Abstract][Full Text] [Related]  

  • 54. In Silico Engineering of Enzyme Access Tunnels.
    Gautieri A; Rigoldi F; Torretta A; Redaelli A; Parisini E
    Methods Mol Biol; 2022; 2397():203-225. PubMed ID: 34813066
    [TBL] [Abstract][Full Text] [Related]  

  • 55. Aldehyde reductase. Catalytic mechanism and substrate recognition.
    Barski OA; Gabbay KH; Bohren KM
    Adv Exp Med Biol; 1997; 414():443-51. PubMed ID: 9059649
    [No Abstract]   [Full Text] [Related]  

  • 56. Possible role of a histidine residue in the substrate specificity of yeast d-aspartate oxidase.
    Takahashi S; Shimada K; Nozawa S; Goto M; Abe K; Kera Y
    J Biochem; 2016 Mar; 159(3):371-8. PubMed ID: 26519738
    [TBL] [Abstract][Full Text] [Related]  

  • 57. Perspective of reactive separation of levulinic acid in conceptual mixer settler reactor.
    Kumar A; Ingle A; Shende DZ; Wasewar KL
    Environ Sci Pollut Res Int; 2023 Feb; 30(10):24890-24898. PubMed ID: 35102506
    [TBL] [Abstract][Full Text] [Related]  

  • 58. Cloning, expression, and characterization of a novel xylose reductase from Rhizopus oryzae.
    Zhang M; Jiang ST; Zheng Z; Li XJ; Luo SZ; Wu XF
    J Basic Microbiol; 2015 Jul; 55(7):907-21. PubMed ID: 25709086
    [TBL] [Abstract][Full Text] [Related]  

  • 59. A novel strictly NADPH-dependent Pichia stipitis xylose reductase constructed by site-directed mutagenesis.
    Khattab SM; Watanabe S; Saimura M; Kodaki T
    Biochem Biophys Res Commun; 2011 Jan; 404(2):634-7. PubMed ID: 21146502
    [TBL] [Abstract][Full Text] [Related]  

  • 60. Aldo-keto reductase 7A5 (AKR7A5) attenuates oxidative stress and reactive aldehyde toxicity in V79-4 cells.
    Li D; Ellis EM
    Toxicol In Vitro; 2014 Jun; 28(4):707-14. PubMed ID: 24590062
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 6.