BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

58 related articles for article (PubMed ID: 2611331)

  • 1. Infrared spectroscopic investigations of pulmonary surfactant. Surface film transitions at the air-water interface and bulk phase thermotropism.
    Dluhy RA; Reilly KE; Hunt RD; Mitchell ML; Mautone AJ; Mendelsohn R
    Biophys J; 1989 Dec; 56(6):1173-81. PubMed ID: 2611331
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Phase transitions of the pulmonary surfactant film at the perfluorocarbon-water interface.
    Li G; Xu X; Zuo YY
    Biophys J; 2023 May; 122(10):1772-1780. PubMed ID: 37041745
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Correlation between Hydration States and Self-assembly Structures of Phospholipid and Surfactant Studied by Terahertz Spectroscopy.
    Hishida M
    J Oleo Sci; 2024; 73(4):419-427. PubMed ID: 38556277
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Tuning the Bulk and Surface Properties of PDMS Networks through Cross-Linker and Surfactant Concentration.
    Litwinowicz M; Rogers S; Caruana A; Kinane C; Tellam J; Thompson R
    Macromolecules; 2021 Oct; 54(20):9636-9648. PubMed ID: 34720190
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Thermotropism in Ankylostome Larvæ.
    Khalil M
    Proc R Soc Med; 1922; 15(Sect Trop Dis Parasitol):16-8. PubMed ID: 19982607
    [No Abstract]   [Full Text] [Related]  

  • 6. Comparison between the behavior of different hydrophobic peptides allowing membrane anchoring of proteins.
    Lhor M; Bernier SC; Horchani H; Bussières S; Cantin L; Desbat B; Salesse C
    Adv Colloid Interface Sci; 2014 May; 207():223-39. PubMed ID: 24560216
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Modulations in the intestinal disaccharide hydrolases and membrane dynamics: effect of non-steroidal anti-inflammatory drugs aspirin and nimesulide.
    Kaushal N; Sanyal SN
    Mol Cell Biochem; 2007 Jan; 294(1-2):107-15. PubMed ID: 16855794
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Probing perturbation of bovine lung surfactant extracts by albumin using DSC and 2H-NMR.
    Nag K; Keough KM; Morrow MR
    Biophys J; 2006 May; 90(10):3632-42. PubMed ID: 16500977
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Deacylated pulmonary surfactant protein SP-C transforms from alpha-helical to amyloid fibril structure via a pH-dependent mechanism: an infrared structural investigation.
    Dluhy RA; Shanmukh S; Leapard JB; Krüger P; Baatz JE
    Biophys J; 2003 Oct; 85(4):2417-29. PubMed ID: 14507705
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Effect of hydrophobic surfactant proteins SP-B and SP-C on binary phospholipid monolayers: II. Infrared external reflectance-absorption spectroscopy.
    Brockman JM; Wang Z; Notter RH; Dluhy RA
    Biophys J; 2003 Jan; 84(1):326-40. PubMed ID: 12524286
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Spectroscopic [correction of eSpectroscopic] and structural properties of valine gramicidin A in monolayers at the air-water interface.
    Lavoie H; Blaudez D; Vaknin D; Desbat B; Ocko BM; Salesse C
    Biophys J; 2002 Dec; 83(6):3558-69. PubMed ID: 12496123
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Effect of hydrophobic surfactant proteins SP-B and SP-C on phospholipid monolayers. Protein structure studied using 2D IR and beta correlation analysis.
    Shanmukh S; Howell P; Baatz JE; Dluhy RA
    Biophys J; 2002 Oct; 83(4):2126-41. PubMed ID: 12324430
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Segregation of saturated chain lipids in pulmonary surfactant films and bilayers.
    Nag K; Pao JS; Harbottle RR; Possmayer F; Petersen NO; Bagatolli LA
    Biophys J; 2002 Apr; 82(4):2041-51. PubMed ID: 11916861
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Effect of hydrophobic surfactant peptides SP-B and SP-C on binary phospholipid monolayers. I. Fluorescence and dark-field microscopy.
    Krüger P; Schalke M; Wang Z; Notter RH; Dluhy RA; Lösche M
    Biophys J; 1999 Aug; 77(2):903-14. PubMed ID: 10423435
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Phase transitions in films of lung surfactant at the air-water interface.
    Nag K; Perez-Gil J; Ruano ML; Worthman LA; Stewart J; Casals C; Keough KM
    Biophys J; 1998 Jun; 74(6):2983-95. PubMed ID: 9635752
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Molecular mobility in the monolayers of foam films stabilized by porcine lung surfactant.
    Lalchev ZI; Todorov RK; Christova YT; Wilde PJ; Mackie AR; Clark DC
    Biophys J; 1996 Nov; 71(5):2591-601. PubMed ID: 8913597
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Lateral phase separation in interfacial films of pulmonary surfactant.
    Discher BM; Maloney KM; Schief WR; Grainger DW; Vogel V; Hall SB
    Biophys J; 1996 Nov; 71(5):2583-90. PubMed ID: 8913596
    [TBL] [Abstract][Full Text] [Related]  

  • 18. In situ study by polarization modulated Fourier transform infrared spectroscopy of the structure and orientation of lipids and amphipathic peptides at the air-water interface.
    Cornut I; Desbat B; Turlet JM; Dufourcq J
    Biophys J; 1996 Jan; 70(1):305-12. PubMed ID: 8770206
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Calcium ion interactions with insoluble phospholipid monolayer films at the A/W interface. External reflection-absorption IR studies.
    Flach CR; Brauner JW; Mendelsohn R
    Biophys J; 1993 Nov; 65(5):1994-2001. PubMed ID: 8298029
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Epifluorescence microscopic studies of monolayers containing mixtures of dioleoyl- and dipalmitoylphosphatidylcholines.
    Nag K; Keough KM
    Biophys J; 1993 Sep; 65(3):1019-26. PubMed ID: 8241382
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 3.