These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

268 related articles for article (PubMed ID: 26113398)

  • 1. A matter of scale: how emerging technologies are redefining our view of chromosome architecture.
    Cattoni DI; Valeri A; Le Gall A; Nollmann M
    Trends Genet; 2015 Aug; 31(8):454-64. PubMed ID: 26113398
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Determination of High-Resolution 3D Chromatin Organization Using Circular Chromosome Conformation Capture (4C-seq).
    Matelot M; Noordermeer D
    Methods Mol Biol; 2016; 1480():223-41. PubMed ID: 27659989
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Chromatin Domains: The Unit of Chromosome Organization.
    Dixon JR; Gorkin DU; Ren B
    Mol Cell; 2016 Jun; 62(5):668-80. PubMed ID: 27259200
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Technical Review: A Hitchhiker's Guide to Chromosome Conformation Capture.
    Grob S; Cavalli G
    Methods Mol Biol; 2018; 1675():233-246. PubMed ID: 29052195
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Computational methods for predicting 3D genomic organization from high-resolution chromosome conformation capture data.
    MacKay K; Kusalik A
    Brief Funct Genomics; 2020 Jul; 19(4):292-308. PubMed ID: 32353112
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Hi-C: a method to study the three-dimensional architecture of genomes.
    van Berkum NL; Lieberman-Aiden E; Williams L; Imakaev M; Gnirke A; Mirny LA; Dekker J; Lander ES
    J Vis Exp; 2010 May; (39):. PubMed ID: 20461051
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Chromosome Conformation Capture in Primary Human Cells.
    Cortesi A; Bodega B
    Methods Mol Biol; 2016; 1480():213-21. PubMed ID: 27659988
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Technologies to study spatial genome organization: beyond 3C.
    Übelmesser N; Papantonis A
    Brief Funct Genomics; 2019 Nov; 18(6):395-401. PubMed ID: 31609405
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Unraveling the 3D genome: genomics tools for multiscale exploration.
    Risca VI; Greenleaf WJ
    Trends Genet; 2015 Jul; 31(7):357-72. PubMed ID: 25887733
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Chromosome conformation capture technologies and their impact in understanding genome function.
    Sati S; Cavalli G
    Chromosoma; 2017 Feb; 126(1):33-44. PubMed ID: 27130552
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Discovering genome regulation with 3C and 3C-related technologies.
    Ethier SD; Miura H; Dostie J
    Biochim Biophys Acta; 2012 May; 1819(5):401-10. PubMed ID: 22207201
    [TBL] [Abstract][Full Text] [Related]  

  • 12. 3D genome architecture from populations to single cells.
    Furlan-Magaril M; Várnai C; Nagano T; Fraser P
    Curr Opin Genet Dev; 2015 Apr; 31():36-41. PubMed ID: 25966907
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Application of Hi-C technology in three-dimensional genomics research and disease pathogenesis analysis.
    Wang SZ; Jiang F; Zhu DL; Yang TL; Guo Y
    Yi Chuan; 2023 Apr; 45(4):279-294. PubMed ID: 37077163
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Chromosome organization in the nucleus - charting new territory across the Hi-Cs.
    Dostie J; Bickmore WA
    Curr Opin Genet Dev; 2012 Apr; 22(2):125-31. PubMed ID: 22265226
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Understanding 3D genome organization by multidisciplinary methods.
    Jerkovic I; Cavalli G
    Nat Rev Mol Cell Biol; 2021 Aug; 22(8):511-528. PubMed ID: 33953379
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Topologically-associating domains: gene warehouses adapted to serve transcriptional regulation.
    Razin SV; Gavrilov AA; Vassetzky YS; Ulianov SV
    Transcription; 2016 May; 7(3):84-90. PubMed ID: 27111547
    [TBL] [Abstract][Full Text] [Related]  

  • 17. [Advances in three-dimensional genomics].
    Zhang F; Shen Z; Yu C; Yang Z
    Sheng Wu Gong Cheng Xue Bao; 2020 Dec; 36(12):2791-2812. PubMed ID: 33398973
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Techniques for and challenges in reconstructing 3D genome structures from 2D chromosome conformation capture data.
    Li Z; Portillo-Ledesma S; Schlick T
    Curr Opin Cell Biol; 2023 Aug; 83():102209. PubMed ID: 37506571
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Analysis methods for studying the 3D architecture of the genome.
    Ay F; Noble WS
    Genome Biol; 2015 Sep; 16():183. PubMed ID: 26328929
    [TBL] [Abstract][Full Text] [Related]  

  • 20. The second decade of 3C technologies: detailed insights into nuclear organization.
    Denker A; de Laat W
    Genes Dev; 2016 Jun; 30(12):1357-82. PubMed ID: 27340173
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 14.