These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

130 related articles for article (PubMed ID: 2611347)

  • 1. A stopped-flow kinetic study of the interaction of potential-sensitive oxonol dyes with lipid vesicles.
    Clarke RJ; Apell HJ
    Biophys Chem; 1989 Nov; 34(3):225-37. PubMed ID: 2611347
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Binding and diffusion kinetics of the interaction of a hydrophobic potential-sensitive dye with lipid vesicles.
    Clarke RJ
    Biophys Chem; 1991 Jan; 39(1):91-106. PubMed ID: 2012838
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Oxonol VI as an optical indicator for membrane potentials in lipid vesicles.
    Apell HJ; Bersch B
    Biochim Biophys Acta; 1987 Oct; 903(3):480-94. PubMed ID: 2444259
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Interaction between DMPC liposomes and HM-PNIPAM polymer.
    Wang Yj; Winnik FM; Clarke RJ
    Biophys Chem; 2003 Jun; 104(2):449-58. PubMed ID: 12878312
    [TBL] [Abstract][Full Text] [Related]  

  • 5. The behavior of oxonol dyes in phospholipid dispersions.
    Bashford CL; Chance B; Smith JC; Yoshida T
    Biophys J; 1979 Jan; 25(1):63-85. PubMed ID: 263685
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Estimation of membrane potential deltapsi in reconstituted plasma membrane vesicles using a numerical model of oxonol VI distribution.
    Portele A; Lenz J; Höfer M
    J Bioenerg Biomembr; 1997 Dec; 29(6):603-9. PubMed ID: 9559861
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Ratiometric fluorescence measurements of membrane potential generated by yeast plasma membrane H(+)-ATPase reconstituted into vesicles.
    Holoubek A; Vecer J; Opekarová M; Sigler K
    Biochim Biophys Acta; 2003 Jan; 1609(1):71-9. PubMed ID: 12507760
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Oxonol-V as a probe of chromaffin granule membrane potentials.
    Scherman D; Henry JP
    Biochim Biophys Acta; 1980 Jun; 599(1):150-66. PubMed ID: 7397145
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Use of oxonol V as a probe of membrane potential in proteoliposomes containing cytochrome oxidase in the submitochondrial orientation.
    Cooper CE; Bruce D; Nicholls P
    Biochemistry; 1990 Apr; 29(16):3859-65. PubMed ID: 2162199
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Kinetics of the potential-sensitive extrinsic probe oxonol VI in beef heart submitochondrial particles.
    Smith JC; Chance B
    J Membr Biol; 1979; 46(3):255-82. PubMed ID: 233819
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Characterization of the steady-state and dynamic fluorescence properties of the potential-sensitive dye bis-(1,3-dibutylbarbituric acid)trimethine oxonol (Dibac4(3)) in model systems and cells.
    Epps DE; Wolfe ML; Groppi V
    Chem Phys Lipids; 1994 Feb; 69(2):137-50. PubMed ID: 8181103
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Potential-sensitive response mechanism of diS-C3-(5) in biological membranes.
    Cabrini G; Verkman AS
    J Membr Biol; 1986; 92(2):171-82. PubMed ID: 3761361
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Spectral properties of fluorescent dyes in lecithin vesicles. Probes for the structure of lipid bilayer membranes and for membrane potentials.
    Pohl GW
    Z Naturforsch C Biosci; 1976; 31(9-10):575-88. PubMed ID: 136128
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Mechanism of fluorescent response of the probe diS-C3-(5) to transmembrane potential changes in a lecithin vesicle suspension.
    Ivkova MN; Pechatnikov VA; Ivkov VG
    Gen Physiol Biophys; 1984 Apr; 3(2):97-117. PubMed ID: 6537363
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Oxonol dyes as monitors of membrane potential. Their behavior in photosynthetic bacteria.
    Bashford CL; Chance B; Prince RC
    Biochim Biophys Acta; 1979 Jan; 545(1):46-57. PubMed ID: 103582
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Impermeant potential-sensitive oxonol dyes: III. The dependence of the absorption signal on membrane potential.
    George EB; Nyirjesy P; Pratap PR; Freedman JC; Waggoner AS
    J Membr Biol; 1988 Oct; 105(1):55-64. PubMed ID: 3225836
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Impermeant potential-sensitive oxonol dyes: I. Evidence for an "on-off" mechanism.
    George EB; Nyirjesy P; Basson M; Ernst LA; Pratap PR; Freedman JC; Waggoner AS
    J Membr Biol; 1988 Aug; 103(3):245-53. PubMed ID: 3184175
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Electrophysiological study with oxonol VI of passive NO3- transport by isolated plant root plasma membrane.
    Pouliquin P; Grouzis J; Gibrat R
    Biophys J; 1999 Jan; 76(1 Pt 1):360-73. PubMed ID: 9876148
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Quantitative analysis of oxonol V fluorescence in submitochondrial particles.
    Freedman JC; Novak TS; Penefsky HS; Stein WD
    Ann N Y Acad Sci; 1992 Nov; 671():493-6. PubMed ID: 1337685
    [No Abstract]   [Full Text] [Related]  

  • 20. Optical probes of membrane potential.
    Waggoner A
    J Membr Biol; 1976 Jun; 27(4):317-34. PubMed ID: 787526
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.