These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

106 related articles for article (PubMed ID: 2611364)

  • 1. A theoretically-based experimental approach for identifying vascular constitutive relations.
    Humphrey JD; Strumpf RK; Yin FC
    Biorheology; 1989; 26(4):687-702. PubMed ID: 2611364
    [TBL] [Abstract][Full Text] [Related]  

  • 2. A new constitutive formulation for characterizing the mechanical behavior of soft tissues.
    Humphrey JD; Yin FC
    Biophys J; 1987 Oct; 52(4):563-70. PubMed ID: 3676437
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Nonlinear elastic analysis of blood vessels.
    Wu SG; Lee GC; Tseng NT
    J Biomech Eng; 1984 Nov; 106(4):376-83. PubMed ID: 6513535
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Microstructurally motivated constitutive modeling of mouse arteries cultured under altered axial stretch.
    Hansen L; Wan W; Gleason RL
    J Biomech Eng; 2009 Oct; 131(10):101015. PubMed ID: 19831485
    [TBL] [Abstract][Full Text] [Related]  

  • 5. A model for the nonlinear elastic response of large arteries.
    Elad D; Foux A; Kivity Y
    J Biomech Eng; 1988 Aug; 110(3):185-9. PubMed ID: 3172737
    [TBL] [Abstract][Full Text] [Related]  

  • 6. A constitutive formulation of vascular tissue mechanics including viscoelasticity and softening behaviour.
    Peña E; Alastrué V; Laborda A; Martínez MA; Doblaré M
    J Biomech; 2010 Mar; 43(5):984-9. PubMed ID: 19959171
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Identification of elastic properties of homogeneous, orthotropic vascular segments in distension.
    Vorp DA; Rajagopal KR; Smolinski PJ; Borovetz HS
    J Biomech; 1995 May; 28(5):501-12. PubMed ID: 7775487
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Mechanical equilibrium of blood vessel walls.
    Azuma T; Oka S
    Am J Physiol; 1971 Nov; 221(5):1310-8. PubMed ID: 5124273
    [No Abstract]   [Full Text] [Related]  

  • 9. Biomechanical aspects of blood vessel function.
    Monos E
    Connect Tissue Res; 1986; 15(1-2):85-96. PubMed ID: 2944706
    [No Abstract]   [Full Text] [Related]  

  • 10. Incremental formulations in vascular mechanics.
    Vaishnav RN; Vossoughi J
    J Biomech Eng; 1984 May; 106(2):105-11. PubMed ID: 6738013
    [TBL] [Abstract][Full Text] [Related]  

  • 11. A microstructurally motivated model of the mechanical behavior of tissue engineered blood vessels.
    Dahl SL; Vaughn ME; Hu JJ; Driessen NJ; Baaijens FP; Humphrey JD; Niklason LE
    Ann Biomed Eng; 2008 Nov; 36(11):1782-92. PubMed ID: 18720007
    [TBL] [Abstract][Full Text] [Related]  

  • 12. A linearized and incompressible constitutive model for arteries.
    Liu Y; Zhang W; Wang C; Kassab GS
    J Theor Biol; 2011 Oct; 286(1):85-91. PubMed ID: 21605567
    [TBL] [Abstract][Full Text] [Related]  

  • 13. A bilinear stress-strain relationship for arteries.
    Zhang W; Kassab GS
    Biomaterials; 2007 Feb; 28(6):1307-15. PubMed ID: 17112583
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Biaxial mechanical properties of the human thoracic and abdominal aorta, common carotid, subclavian, renal and common iliac arteries.
    Kamenskiy AV; Dzenis YA; Kazmi SA; Pemberton MA; Pipinos II; Phillips NY; Herber K; Woodford T; Bowen RE; Lomneth CS; MacTaggart JN
    Biomech Model Mechanobiol; 2014 Nov; 13(6):1341-59. PubMed ID: 24710603
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Biomechanical behavior of pericardial human tissue: a constitutive formulation.
    Pavan PG; Pachera P; Tiengo C; Natali AN
    Proc Inst Mech Eng H; 2014 Sep; 228(9):926-34. PubMed ID: 25224743
    [TBL] [Abstract][Full Text] [Related]  

  • 16. A description of arterial wall mechanics using limiting chain extensibility constitutive models.
    Horgan CO; Saccomandi G
    Biomech Model Mechanobiol; 2003 Apr; 1(4):251-66. PubMed ID: 14586694
    [TBL] [Abstract][Full Text] [Related]  

  • 17. An approach to the mechanical constitutive modelling of arterial tissue based on homogenization and optimization.
    Speirs DC; de Souza Neto EA; Perić D
    J Biomech; 2008 Aug; 41(12):2673-80. PubMed ID: 18674766
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Deformations and end effects in isolated blood vessel testing.
    Monson KL; Mathur V; Powell DA
    J Biomech Eng; 2011 Jan; 133(1):011005. PubMed ID: 21186895
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Experimental approaches on measuring the mechanical properties and constitutive laws of arterial walls.
    Hayashi K
    J Biomech Eng; 1993 Nov; 115(4B):481-8. PubMed ID: 8302029
    [TBL] [Abstract][Full Text] [Related]  

  • 20. On constitutive relations and finite deformations of passive cardiac tissue: I. A pseudostrain-energy function.
    Humphrey JD; Yin FC
    J Biomech Eng; 1987 Nov; 109(4):298-304. PubMed ID: 3695429
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.