These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

143 related articles for article (PubMed ID: 26114034)

  • 1. Mapping conduction velocity of early embryonic hearts with a robust fitting algorithm.
    Gu S; Wang YT; Ma P; Werdich AA; Rollins AM; Jenkins MW
    Biomed Opt Express; 2015 Jun; 6(6):2138-57. PubMed ID: 26114034
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Three-dimensional correction of conduction velocity in the embryonic heart using integrated optical mapping and optical coherence tomography.
    Ma P; Wang YT; Gu S; Watanabe M; Jenkins MW; Rollins AM
    J Biomed Opt; 2014; 19(7):76004. PubMed ID: 24996663
    [TBL] [Abstract][Full Text] [Related]  

  • 3. In vivo ratiometric optical mapping enables high-resolution cardiac electrophysiology in pig models.
    Lee P; Quintanilla JG; Alfonso-Almazán JM; Galán-Arriola C; Yan P; Sánchez-González J; Pérez-Castellano N; Pérez-Villacastín J; Ibañez B; Loew LM; Filgueiras-Rama D
    Cardiovasc Res; 2019 Sep; 115(11):1659-1671. PubMed ID: 30753358
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Construction of 3D MR image-based computer models of pathologic hearts, augmented with histology and optical fluorescence imaging to characterize action potential propagation.
    Pop M; Sermesant M; Liu G; Relan J; Mansi T; Soong A; Peyrat JM; Truong MV; Fefer P; McVeigh ER; Delingette H; Dick AJ; Ayache N; Wright GA
    Med Image Anal; 2012 Feb; 16(2):505-23. PubMed ID: 22209561
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Wavelet analysis of cardiac optical mapping data.
    Xiong F; Qi X; Nattel S; Comtois P
    Comput Biol Med; 2015 Oct; 65():243-55. PubMed ID: 26209111
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Identification of sampling patterns for high-resolution compressed sensing MRI of porous materials: 'learning' from X-ray microcomputed tomography data.
    Karlsons K; DE Kort DW; Sederman AJ; Mantle MD; DE Jong H; Appel M; Gladden LF
    J Microsc; 2019 Nov; 276(2):63-81. PubMed ID: 31587277
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Open-source low-cost cardiac optical mapping system.
    Rybashlykov D; Brennan J; Lin Z; Efimov IR; Syunyaev R
    PLoS One; 2022; 17(3):e0259174. PubMed ID: 35358183
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Estimation of muscle fiber conduction velocity with a spectral multidip approach.
    Farina D; Negro F
    IEEE Trans Biomed Eng; 2007 Sep; 54(9):1583-9. PubMed ID: 17867350
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Cardiac action potential wavefront tracking using optical mapping.
    Ashraf A; Nygren A
    Annu Int Conf IEEE Eng Med Biol Soc; 2009; 2009():1766-9. PubMed ID: 19964013
    [TBL] [Abstract][Full Text] [Related]  

  • 10. A novel technique for determination of two dimensional signal-to-noise ratio improvement factor of an antiscatter grid in digital radiography.
    Nøtthellen J; Konst B; Abildgaard A
    Phys Med Biol; 2014 Aug; 59(15):4213-25. PubMed ID: 25017397
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Marker-Free Tracking for Motion Artifact Compensation and Deformation Measurements in Optical Mapping Videos of Contracting Hearts.
    Christoph J; Luther S
    Front Physiol; 2018; 9():1483. PubMed ID: 30450053
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Improved liver R2* mapping by pixel-wise curve fitting with adaptive neighborhood regularization.
    Wang C; Zhang X; Liu X; He T; Chen W; Feng Q; Feng Y
    Magn Reson Med; 2018 Aug; 80(2):792-801. PubMed ID: 29334128
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Automated isochronal late activation mapping to identify deceleration zones: Rationale and methodology of a practical electroanatomic mapping approach for ventricular tachycardia ablation.
    Raiman M; Tung R
    Comput Biol Med; 2018 Nov; 102():336-340. PubMed ID: 30033360
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Material-specific transfer function model and SNR in CT.
    Brunner CC; Kyprianou IS
    Phys Med Biol; 2013 Oct; 58(20):7447-61. PubMed ID: 24081016
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Ultrashort echo time imaging for quantification of hepatic iron overload: Comparison of acquisition and fitting methods via simulations, phantoms, and in vivo data.
    Tipirneni-Sajja A; Loeffler RB; Krafft AJ; Sajewski AN; Ogg RJ; Hankins JS; Hillenbrand CM
    J Magn Reson Imaging; 2019 May; 49(5):1475-1488. PubMed ID: 30358001
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Transitions in ventricular activation revealed by two-dimensional optical mapping.
    Chuck ET; Meyers K; France D; Creazzo TL; Morley GE
    Anat Rec A Discov Mol Cell Evol Biol; 2004 Oct; 280(2):990-1000. PubMed ID: 15372433
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Efficient scatter distribution estimation and correction in CBCT using concurrent Monte Carlo fitting.
    Bootsma GJ; Verhaegen F; Jaffray DA
    Med Phys; 2015 Jan; 42(1):54-68. PubMed ID: 25563247
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Unique properties of cardiac action potentials recorded with voltage-sensitive dyes.
    Girouard SD; Laurita KR; Rosenbaum DS
    J Cardiovasc Electrophysiol; 1996 Nov; 7(11):1024-38. PubMed ID: 8930734
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Optical Imaging of Ventricular Action Potentials in a Torso Tank: A New Platform for Non-Invasive Electrocardiographic Imaging Validation.
    Bear LR; Walton RD; Abell E; Coudière Y; Haissaguerre M; Bernus O; Dubois R
    Front Physiol; 2019; 10():146. PubMed ID: 30863318
    [No Abstract]   [Full Text] [Related]  

  • 20.
    ; ; . PubMed ID:
    [No Abstract]   [Full Text] [Related]  

    [Next]    [New Search]
    of 8.