BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

186 related articles for article (PubMed ID: 26114045)

  • 21. Optical coherence contrast imaging using gold nanorods in living mice eyes.
    de la Zerda A; Prabhulkar S; Perez VL; Ruggeri M; Paranjape AS; Habte F; Gambhir SS; Awdeh RM
    Clin Exp Ophthalmol; 2015; 43(4):358-66. PubMed ID: 24533647
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Liposome-Templated Indocyanine Green J- Aggregates for
    Cheung CCL; Ma G; Karatasos K; Seitsonen J; Ruokolainen J; Koffi CR; Hassan HAFM; Al-Jamal WT
    Nanotheranostics; 2020; 4(2):91-106. PubMed ID: 32190536
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Transient-mode photothermal optical coherence tomography.
    Salimi MH; Villiger M; Tabatabaei N
    Opt Lett; 2021 Nov; 46(22):5703-5706. PubMed ID: 34780441
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Contrast-enhanced optical coherence tomography with picomolar sensitivity for functional in vivo imaging.
    Liba O; SoRelle ED; Sen D; de la Zerda A
    Sci Rep; 2016 Mar; 6():23337. PubMed ID: 26987475
    [TBL] [Abstract][Full Text] [Related]  

  • 25. [The new OCT generation offers deep insights: imaging of the choroid using the Cirrus OCT].
    Hassenstein A; Scholz F; Richard G
    Ophthalmologe; 2013 Mar; 110(3):239-46. PubMed ID: 23504095
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Fast wide-field photothermal and quantitative phase cell imaging with optical lock-in detection.
    Eldridge WJ; Meiri A; Sheinfeld A; Rinehart MT; Wax A
    Biomed Opt Express; 2014 Aug; 5(8):2517-25. PubMed ID: 25136482
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Dual-wavelength photothermal optical coherence tomography for imaging microvasculature blood oxygen saturation.
    Yin B; Kuranov RV; McElroy AB; Kazmi S; Dunn AK; Duong TQ; Milner TE
    J Biomed Opt; 2013 May; 18(5):56005. PubMed ID: 23640076
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Effects of lipid composition on photothermal optical coherence tomography signals.
    Salimi M; Villiger M; Tabatabaei N
    J Biomed Opt; 2020 Dec; 25(12):. PubMed ID: 33369310
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Photothermal detection of gold nanoparticles using phase-sensitive optical coherence tomography.
    Adler DC; Huang SW; Huber R; Fujimoto JG
    Opt Express; 2008 Mar; 16(7):4376-93. PubMed ID: 18542535
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Tissue perfusion modelling in optical coherence tomography.
    Stohanzlova P; Kolar R
    Biomed Eng Online; 2017 Feb; 16(1):27. PubMed ID: 28178998
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Choroidal granulomas visualized by enhanced depth imaging optical coherence tomography.
    Invernizzi A; Mapelli C; Viola F; Cigada M; Cimino L; Ratiglia R; Staurenghi G; Gupta A
    Retina; 2015 Mar; 35(3):525-31. PubMed ID: 25105317
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Potential of contrast agents to enhance in vivo confocal microscopy and optical coherence tomography in dermatology: A review.
    Ring HC; Israelsen NM; Bang O; Haedersdal M; Mogensen M
    J Biophotonics; 2019 Jun; 12(6):e201800462. PubMed ID: 30851078
    [TBL] [Abstract][Full Text] [Related]  

  • 33. High-sensitivity dynamic diffuse fluorescence tomography system for fluorescence pharmacokinetics.
    Zhang L; Cheng N; Liu H; Pan Y; Zhang Y; Gao F
    J Biomed Opt; 2022 Apr; 27(4):. PubMed ID: 35460219
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Investigation of Gd
    Mohan M; Poddar R
    J Fluoresc; 2021 Mar; 31(2):541-550. PubMed ID: 33452637
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Photothermal optical coherence tomography of epidermal growth factor receptor in live cells using immunotargeted gold nanospheres.
    Skala MC; Crow MJ; Wax A; Izatt JA
    Nano Lett; 2008 Oct; 8(10):3461-7. PubMed ID: 18767886
    [TBL] [Abstract][Full Text] [Related]  

  • 36. In Vivo Subretinal ARPE-19 Cell Tracking Using Indocyanine Green Contrast-Enhanced Multimodality Photoacoustic Microscopy, Optical Coherence Tomography, and Fluorescence Imaging for Regenerative Medicine.
    Nguyen VP; Li Y; Henry J; Qian T; Zhang W; Wang X; Paulus YM
    Transl Vis Sci Technol; 2021 Aug; 10(10):10. PubMed ID: 34473239
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Investigations of the eye fundus using a simultaneous optical coherence tomography/indocyanine green fluorescence imaging system.
    Podoleanu AG; Dobre GM; Cernat R; Rogers JA; Pedro J; Rosen RB; Garcia P
    J Biomed Opt; 2007; 12(1):014019. PubMed ID: 17343494
    [TBL] [Abstract][Full Text] [Related]  

  • 38. High-Speed Balanced-Detection Visible-Light Optical Coherence Tomography in the Human Retina Using Subpixel Spectrometer Calibration.
    Rubinoff I; Miller DA; Kuranov R; Wang Y; Fang R; Volpe NJ; Zhang HF
    IEEE Trans Med Imaging; 2022 Jul; 41(7):1724-1734. PubMed ID: 35089857
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Non-invasive optical coherence tomography angiography: A comparison with fluorescein and indocyanine green angiography in normal adult dogs and cats.
    Occelli LM; Pirie CG; Petersen-Jones SM
    Vet Ophthalmol; 2022 May; 25 Suppl 1():164-178. PubMed ID: 35156737
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Indocyanine green-containing nanostructure as near infrared dual-functional targeting probes for optical imaging and photothermal therapy.
    Zheng X; Xing D; Zhou F; Wu B; Chen WR
    Mol Pharm; 2011 Apr; 8(2):447-56. PubMed ID: 21197955
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 10.