BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

231 related articles for article (PubMed ID: 26114359)

  • 1. Mercury uptake and phytotoxicity in terrestrial plants grown naturally in the Gumuskoy (Kutahya) mining area, Turkey.
    Sasmaz M; Akgül B; Yıldırım D; Sasmaz A
    Int J Phytoremediation; 2016; 18(1):69-76. PubMed ID: 26114359
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Distribution and accumulation of selenium in wild plants growing naturally in the Gumuskoy (Kutahya) mining area, Turkey.
    Sasmaz M; Akgül B; Sasmaz A
    Bull Environ Contam Toxicol; 2015 May; 94(5):598-603. PubMed ID: 25800342
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Bioaccumulation of thallium by the wild plants grown in soils of mining area.
    Sasmaz M; Akgul B; Yıldırım D; Sasmaz A
    Int J Phytoremediation; 2016 Nov; 18(11):1164-70. PubMed ID: 27196508
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Phytoremediation of Cadmium by Native Plants Grown on Mining Soil.
    Palutoglu M; Akgul B; Suyarko V; Yakovenko M; Kryuchenko N; Sasmaz A
    Bull Environ Contam Toxicol; 2018 Feb; 100(2):293-297. PubMed ID: 29177694
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Translocation and accumulation of boron in roots and shoots of plants grown in soils of low boron concentration in Turkey's Keban Pb-Zn mining area.
    Sasmaz A
    Int J Phytoremediation; 2008; 10():302-10. PubMed ID: 19260215
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Strontium accumulation by the terrestrial and aquatic plants affected by mining and municipal wastewaters (Elazig, Turkey).
    Sasmaz M; Uslu Senel G; Obek E
    Environ Geochem Health; 2021 Jun; 43(6):2257-2270. PubMed ID: 32728950
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Capability of selected crop plants for shoot mercury accumulation from polluted soils: phytoremediation perspectives.
    Rodriguez L; Rincón J; Asencio I; Rodríguez-Castellanos L
    Int J Phytoremediation; 2007; 9(1):1-13. PubMed ID: 18246711
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Screening of native plant species for phytoremediation potential at a Hg-contaminated mining site.
    Marrugo-Negrete J; Marrugo-Madrid S; Pinedo-Hernández J; Durango-Hernández J; Díez S
    Sci Total Environ; 2016 Jan; 542(Pt A):809-16. PubMed ID: 26556744
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Mercury bioaccumulation and phytotoxicity in two wild plant species of Almadén area.
    Moreno-Jiménez E; Gamarra R; Carpena-Ruiz RO; Millán R; Peñalosa JM; Esteban E
    Chemosphere; 2006 Jun; 63(11):1969-73. PubMed ID: 16293291
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Use of iodide to enhance the phytoextraction of mercury-contaminated soil.
    Wang Y; Greger M
    Sci Total Environ; 2006 Sep; 368(1):30-9. PubMed ID: 16236348
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Uptake and accumulation of lead by plants from the Bo Ngam lead mine area in Thailand.
    Rotkittikhun P; Kruatrachue M; Chaiyarat R; Ngernsansaruay C; Pokethitiyook P; Paijitprapaporn A; Baker AJ
    Environ Pollut; 2006 Nov; 144(2):681-8. PubMed ID: 16533549
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Mercury uptake and effects on growth in Jatropha curcas.
    Marrugo-Negrete J; Durango-Hernández J; Pinedo-Hernández J; Enamorado-Montes G; Díez S
    J Environ Sci (China); 2016 Oct; 48():120-125. PubMed ID: 27745657
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Efficiency of white lupin in the removal of mercury from contaminated soils: soil and hydroponic experiments.
    Zornoza P; Millán R; Sierra MJ; Seco A; Esteban E
    J Environ Sci (China); 2010; 22(3):421-7. PubMed ID: 20614785
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Mercury uptake and translocation in Impatiens walleriana plants grown in the contaminated soil from Oak Ridge.
    Pant P; Allen M; Tansel B
    Int J Phytoremediation; 2011 Feb; 13(2):168-76. PubMed ID: 21598784
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Thiosulphate-induced phytoextraction of mercury in Brassica juncea: Spectroscopic investigations to define a mechanism for Hg uptake.
    Wang J; Anderson CWN; Xing Y; Fan Y; Xia J; Shaheen SM; Rinklebe J; Feng X
    Environ Pollut; 2018 Nov; 242(Pt A):986-993. PubMed ID: 30373044
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Impact of the lavender rhizosphere on the mercury uptake in field conditions.
    Sierra MJ; Rodríguez-Alonso J; Millán R
    Chemosphere; 2012 Nov; 89(11):1457-66. PubMed ID: 22818090
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Transfer and bioaccumulation of mercury from soil in cowpea in gold mining sites.
    Marrugo-Negrete J; Durango-Hernández J; Díaz-Fernández L; Urango-Cárdenas I; Araméndiz-Tatis H; Vergara-Flórez V; Bravo AG; Díez S
    Chemosphere; 2020 Jul; 250():126142. PubMed ID: 32105852
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Phytoremediation of mercury-contaminated soils by Jatropha curcas.
    Marrugo-Negrete J; Durango-Hernández J; Pinedo-Hernández J; Olivero-Verbel J; Díez S
    Chemosphere; 2015 May; 127():58-63. PubMed ID: 25655698
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Mercury uptake by Silene vulgaris grown on contaminated spiked soils.
    Pérez-Sanz A; Millán R; Sierra MJ; Alarcón R; García P; Gil-Díaz M; Vazquez S; Lobo MC
    J Environ Manage; 2012 Mar; 95 Suppl():S233-7. PubMed ID: 20708330
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Mercury accumulation in soils and plants in the Almadén mining district, Spain: one of the most contaminated sites on Earth.
    Molina JA; Oyarzun R; Esbrí JM; Higueras P
    Environ Geochem Health; 2006 Oct; 28(5):487-98. PubMed ID: 17013679
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 12.