These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

229 related articles for article (PubMed ID: 26114359)

  • 21. Costus speciosus (Koen ex. Retz.) Sm.: a suitable plant species for remediation of crude oil and mercury-contaminated soil.
    Talukdar P; Baruah A; Bhuyan SJ; Boruah S; Borah P; Bora C; Basumatary B
    Environ Sci Pollut Res Int; 2024 May; 31(22):31843-31861. PubMed ID: 38639901
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Mercury distribution in the soil-plant-air system at the Wanshan mercury mining district in Guizhou, Southwest China.
    Wang J; Feng X; Anderson CW; Zhu W; Yin R; Wang H
    Environ Toxicol Chem; 2011 Dec; 30(12):2725-31. PubMed ID: 21935979
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Mercury accumulation plant Cyrtomium macrophyllum and its potential for phytoremediation of mercury polluted sites.
    Xun Y; Feng L; Li Y; Dong H
    Chemosphere; 2017 Dec; 189():161-170. PubMed ID: 28934656
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Total mercury and methylmercury accumulation in wild plants grown at wastelands composed of mine tailings: Insights into potential candidates for phytoremediation.
    Qian X; Wu Y; Zhou H; Xu X; Xu Z; Shang L; Qiu G
    Environ Pollut; 2018 Aug; 239():757-767. PubMed ID: 29729617
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Selenium in soil inhibits mercury uptake and translocation in rice (Oryza sativa L.).
    Zhang H; Feng X; Zhu J; Sapkota A; Meng B; Yao H; Qin H; Larssen T
    Environ Sci Technol; 2012 Sep; 46(18):10040-6. PubMed ID: 22916794
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Mercury volatilisation and phytoextraction from base-metal mine tailings.
    Moreno FN; Anderson CW; Stewart RB; Robinson BH
    Environ Pollut; 2005 Jul; 136(2):341-52. PubMed ID: 15840542
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Phytoextraction of HG by parsley (Petroselinum crispum) and its growth responses.
    Bibi A; Farooq U; Naz S; Khan A; Khan S; Sarwar R; Mahmood Q; Alam A; Mirza N
    Int J Phytoremediation; 2016; 18(4):354-7. PubMed ID: 26514060
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Chelate-assisted phytoextraction of mercury in biosolids.
    Lomonte C; Doronila A; Gregory D; Baker AJ; Kolev SD
    Sci Total Environ; 2011 Jun; 409(13):2685-92. PubMed ID: 21514623
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Accumulation of Pb, Cu, and Zn in native plants growing on a contaminated Florida site.
    Yoon J; Cao X; Zhou Q; Ma LQ
    Sci Total Environ; 2006 Sep; 368(2-3):456-64. PubMed ID: 16600337
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Effect of copper-tolerant rhizosphere bacteria on mobility of copper in soil and copper accumulation by Elsholtzia splendens.
    Chen YX; Wang YP; Lin Q; Luo YM
    Environ Int; 2005 Aug; 31(6):861-6. PubMed ID: 16005516
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Strategies for the engineered phytoremediation of toxic element pollution: mercury and arsenic.
    Meagher RB; Heaton AC
    J Ind Microbiol Biotechnol; 2005 Dec; 32(11-12):502-13. PubMed ID: 15995854
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Phytoremediation of mercury- and methyl mercury-contaminated sediments by water hyacinth (Eichhornia crassipes).
    Chattopadhyay S; Fimmen RL; Yates BJ; Lal V; Randall P
    Int J Phytoremediation; 2012 Feb; 14(2):142-61. PubMed ID: 22567701
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Uptake and accumulation of phosphorus by dominant plant species growing in a phosphorus mining area.
    Xiao G; Li T; Zhang X; Yu H; Huang H; Gupta DK
    J Hazard Mater; 2009 Nov; 171(1-3):542-50. PubMed ID: 19608342
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Evaluation of mercury stress in plants from the Almadén mining district by analysis of phytochelatins and their Hg complexes.
    Dago À; González I; Ariño C; Martínez-Coronado A; Higueras P; Díaz-Cruz JM; Esteban M
    Environ Sci Technol; 2014 Jun; 48(11):6256-63. PubMed ID: 24793970
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Erato polymnioides - A novel Hg hyperaccumulator plant in ecuadorian rainforest acid soils with potential of microbe-associated phytoremediation.
    Chamba I; Rosado D; Kalinhoff C; Thangaswamy S; Sánchez-Rodríguez A; Gazquez MJ
    Chemosphere; 2017 Dec; 188():633-641. PubMed ID: 28918247
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Phytoremediation of mercury and organomercurials in chloroplast transgenic plants: enhanced root uptake, translocation to shoots, and volatilization.
    Hussein HS; Ruiz ON; Terry N; Daniell H
    Environ Sci Technol; 2007 Dec; 41(24):8439-46. PubMed ID: 18200876
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Translocation and accumulation of Cr, Hg, As, Pb, Cu and Ni by Amaranthus dubius (Amaranthaceae) from contaminated sites.
    Mellem JJ; Baijnath H; Odhav B
    J Environ Sci Health A Tox Hazard Subst Environ Eng; 2009 May; 44(6):568-75. PubMed ID: 19337919
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Remediation aspect of microbial changes of plant rhizosphere in mercury contaminated soil.
    Sas-Nowosielska A; Galimska-Stypa R; Kucharski R; Zielonka U; Małkowski E; Gray L
    Environ Monit Assess; 2008 Feb; 137(1-3):101-9. PubMed ID: 17492484
    [TBL] [Abstract][Full Text] [Related]  

  • 39. An overview of heavy metal challenge in plants: from roots to shoots.
    DalCorso G; Manara A; Furini A
    Metallomics; 2013 Sep; 5(9):1117-32. PubMed ID: 23739766
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Copper phytoremediation potential of wild plant species growing in the mine polluted areas of Armenia.
    Ghazaryan K; Movsesyan H; Ghazaryan N; Watts BA
    Environ Pollut; 2019 Jun; 249():491-501. PubMed ID: 30928521
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 12.