BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

205 related articles for article (PubMed ID: 26114422)

  • 1. Studies on the Formation of Maillard and Caramelization Products from Glucosamine Incubated at 37 °C.
    Hrynets Y; Ndagijimana M; Betti M
    J Agric Food Chem; 2015 Jul; 63(27):6249-61. PubMed ID: 26114422
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Effect of Sodium Chloride on α-Dicarbonyl Compound and 5-Hydroxymethyl-2-furfural Formations from Glucose under Caramelization Conditions: A Multiresponse Kinetic Modeling Approach.
    Kocadağlı T; Gökmen V
    J Agric Food Chem; 2016 Aug; 64(32):6333-42. PubMed ID: 27477785
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Non-enzymatic browning reaction of glucosamine at mild conditions: Relationship between colour formation, radical scavenging activity and α-dicarbonyl compounds production.
    Hong PK; Betti M
    Food Chem; 2016 Dec; 212():234-43. PubMed ID: 27374528
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Cold non-enzymatic browning of glucosamine in the presence of metmyoglobin induces glucosone and deoxymyoglobin formation.
    Zhao X; Hrynets Y; Betti M
    Food Chem; 2020 Feb; 305():125504. PubMed ID: 31606691
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Multiresponse kinetic modelling of Maillard reaction and caramelisation in a heated glucose/wheat flour system.
    Kocadağlı T; Gökmen V
    Food Chem; 2016 Nov; 211():892-902. PubMed ID: 27283710
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Formation of α-Dicarbonyls from Dairy Related Carbohydrates with and without Nα-Acetyl-l-Lysine during Incubation at 40 and 50 °C.
    Zhang W; Poojary MM; Olsen K; Ray CA; Lund MN
    J Agric Food Chem; 2019 Jun; 67(22):6350-6358. PubMed ID: 31083944
    [TBL] [Abstract][Full Text] [Related]  

  • 7. The effect of amino acids on non-enzymatic browning of glucosamine: Generation of butterscotch aromatic and bioactive health compounds without detectable levels of neo-formed alkylimidazoles.
    Dhungel P; Bhattacherjee A; Hrynets Y; Betti M
    Food Chem; 2020 Mar; 308():125612. PubMed ID: 31670192
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Browning Potential of C
    Haase PT; Kanzler C; Hildebrandt J; Kroh LW
    J Agric Food Chem; 2017 Mar; 65(9):1924-1931. PubMed ID: 28198624
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Iron (Fe(2+))-Catalyzed Glucosamine Browning at 50 °C: Identification and Quantification of Major Flavor Compounds for Antibacterial Activity.
    Hrynets Y; Bhattacherjee A; Ndagijimana M; Hincapie Martinez DJ; Betti M
    J Agric Food Chem; 2016 Apr; 64(16):3266-75. PubMed ID: 27043007
    [TBL] [Abstract][Full Text] [Related]  

  • 10. 3-deoxygalactosone, a "new" 1,2-dicarbonyl compound in milk products.
    Hellwig M; Degen J; Henle T
    J Agric Food Chem; 2010 Oct; 58(19):10752-60. PubMed ID: 20822095
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Sous-Vide Nonenzymatic Browning of Glucosamine at Different Temperatures.
    Dhungel P; Hrynets Y; Betti M
    J Agric Food Chem; 2018 May; 66(17):4521-4530. PubMed ID: 29658276
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Rapid Myoglobin Aggregation through Glucosamine-Induced α-Dicarbonyl Formation.
    Hrynets Y; Ndagijimana M; Betti M
    PLoS One; 2015; 10(9):e0139022. PubMed ID: 26406447
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Degradation of glucose: reinvestigation of reactive alpha-Dicarbonyl compounds.
    Gobert J; Glomb MA
    J Agric Food Chem; 2009 Sep; 57(18):8591-7. PubMed ID: 19711949
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Kinetics of α‑dicarbonyl compounds formation in glucose-glutamic acid model of Maillard reaction.
    Zhang L; Sun Y; Pu D; Zhang Y; Sun B; Zhao Z
    Food Sci Nutr; 2021 Jan; 9(1):290-302. PubMed ID: 33473293
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Maillard reaction and caramelization during hazelnut roasting: A multiresponse kinetic study.
    Göncüoğlu Taş N; Gökmen V
    Food Chem; 2017 Apr; 221():1911-1922. PubMed ID: 27979180
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Analysis of sugar degradation products with α-dicarbonyl structure in carbonated soft drinks by UHPLC-DAD-MS/MS.
    Gensberger S; Glomb MA; Pischetsrieder M
    J Agric Food Chem; 2013 Oct; 61(43):10238-45. PubMed ID: 23452313
    [TBL] [Abstract][Full Text] [Related]  

  • 17. 2-Deoxyglucosone: A New C
    Bruhns P; Kaufmann M; Koch T; Kroh LW
    J Agric Food Chem; 2018 Nov; 66(44):11806-11811. PubMed ID: 30336014
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Identification and determination of alpha-dicarbonyl compounds formed in the degradation of sugars.
    Usui T; Yanagisawa S; Ohguchi M; Yoshino M; Kawabata R; Kishimoto J; Arai Y; Aida K; Watanabe H; Hayase F
    Biosci Biotechnol Biochem; 2007 Oct; 71(10):2465-72. PubMed ID: 17928698
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Novel insights into the maillard catalyzed degradation of maltose.
    Smuda M; Glomb MA
    J Agric Food Chem; 2011 Dec; 59(24):13254-64. PubMed ID: 22122608
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Identification and quantification of six major α-dicarbonyl process contaminants in high-fructose corn syrup.
    Gensberger S; Mittelmaier S; Glomb MA; Pischetsrieder M
    Anal Bioanal Chem; 2012 Jul; 403(10):2923-31. PubMed ID: 22382856
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 11.