BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

288 related articles for article (PubMed ID: 26114434)

  • 1. Pseudomonas aeruginosa MifS-MifR Two-Component System Is Specific for α-Ketoglutarate Utilization.
    Tatke G; Kumari H; Silva-Herzog E; Ramirez L; Mathee K
    PLoS One; 2015; 10(6):e0129629. PubMed ID: 26114434
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Genetic analysis of the assimilation of C5-dicarboxylic acids in Pseudomonas aeruginosa PAO1.
    Lundgren BR; Villegas-Peñaranda LR; Harris JR; Mottern AM; Dunn DM; Boddy CN; Nomura CT
    J Bacteriol; 2014 Jul; 196(14):2543-51. PubMed ID: 24794562
    [TBL] [Abstract][Full Text] [Related]  

  • 3. MifS, a DctB family histidine kinase, is a specific regulator of α-ketoglutarate response in
    Sarwar Z; Wang MX; Lundgren BR; Nomura CT
    Microbiology (Reading); 2020 Sep; 166(9):867-879. PubMed ID: 32553056
    [TBL] [Abstract][Full Text] [Related]  

  • 4. The Enhancer-Binding Protein MifR, an Essential Regulator of α-Ketoglutarate Transport, Is Required for Full Virulence of Pseudomonas aeruginosa PAO1 in a Mouse Model of Pneumonia.
    Xiong W; Perna A; Jacob IB; Lundgren BR; Wang G
    Infect Immun; 2022 Oct; 90(10):e0013622. PubMed ID: 36125307
    [TBL] [Abstract][Full Text] [Related]  

  • 5. The CbrA-CbrB two-component regulatory system controls the utilization of multiple carbon and nitrogen sources in Pseudomonas aeruginosa.
    Nishijyo T; Haas D; Itoh Y
    Mol Microbiol; 2001 May; 40(4):917-31. PubMed ID: 11401699
    [TBL] [Abstract][Full Text] [Related]  

  • 6. A transcriptional activator, FleQ, regulates mucin adhesion and flagellar gene expression in Pseudomonas aeruginosa in a cascade manner.
    Arora SK; Ritchings BW; Almira EC; Lory S; Ramphal R
    J Bacteriol; 1997 Sep; 179(17):5574-81. PubMed ID: 9287015
    [TBL] [Abstract][Full Text] [Related]  

  • 7. The regulatory repertoire of Pseudomonas aeruginosa AmpC ß-lactamase regulator AmpR includes virulence genes.
    Balasubramanian D; Schneper L; Merighi M; Smith R; Narasimhan G; Lory S; Mathee K
    PLoS One; 2012; 7(3):e34067. PubMed ID: 22479525
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Utilization of L-glutamate as a preferred or sole nutrient in Pseudomonas aeruginosa PAO1 depends on genes encoding for the enhancer-binding protein AauR, the sigma factor RpoN and the transporter complex AatJQMP.
    Lundgren BR; Shoytush JM; Scheel RA; Sain S; Sarwar Z; Nomura CT
    BMC Microbiol; 2021 Mar; 21(1):83. PubMed ID: 33722201
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Molecular characterization and regulation of operons for asparagine and aspartate uptake and utilization in Pseudomonas aeruginosa.
    Li G; Lu CD
    Microbiology (Reading); 2018 Feb; 164(2):205-216. PubMed ID: 29293081
    [TBL] [Abstract][Full Text] [Related]  

  • 10. PilS and PilR, a two-component transcriptional regulatory system controlling expression of type 4 fimbriae in Pseudomonas aeruginosa.
    Hobbs M; Collie ES; Free PD; Livingston SP; Mattick JS
    Mol Microbiol; 1993 Mar; 7(5):669-82. PubMed ID: 8097014
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Divergent structure and regulatory mechanism of proline catabolic systems: characterization of the putAP proline catabolic operon of Pseudomonas aeruginosa PAO1 and its regulation by PruR, an AraC/XylS family protein.
    Nakada Y; Nishijyo T; Itoh Y
    J Bacteriol; 2002 Oct; 184(20):5633-40. PubMed ID: 12270821
    [TBL] [Abstract][Full Text] [Related]  

  • 12. A four-tiered transcriptional regulatory circuit controls flagellar biogenesis in Pseudomonas aeruginosa.
    Dasgupta N; Wolfgang MC; Goodman AL; Arora SK; Jyot J; Lory S; Ramphal R
    Mol Microbiol; 2003 Nov; 50(3):809-24. PubMed ID: 14617143
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Identification of C(4)-dicarboxylate transport systems in Pseudomonas aeruginosa PAO1.
    Valentini M; Storelli N; Lapouge K
    J Bacteriol; 2011 Sep; 193(17):4307-16. PubMed ID: 21725012
    [TBL] [Abstract][Full Text] [Related]  

  • 14. PhhR, a divergently transcribed activator of the phenylalanine hydroxylase gene cluster of Pseudomonas aeruginosa.
    Song J; Jensen RA
    Mol Microbiol; 1996 Nov; 22(3):497-507. PubMed ID: 8939433
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Characterization of the 2-ketogluconate utilization operon in Pseudomonas aeruginosa PAO1.
    Swanson BL; Hager P; Phibbs P; Ochsner U; Vasil ML; Hamood AN
    Mol Microbiol; 2000 Aug; 37(3):561-73. PubMed ID: 10931350
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Regulation of carbon and nitrogen utilization by CbrAB and NtrBC two-component systems in Pseudomonas aeruginosa.
    Li W; Lu CD
    J Bacteriol; 2007 Aug; 189(15):5413-20. PubMed ID: 17545289
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Characterization of a five-gene cluster required for the biogenesis of type 4 fimbriae in Pseudomonas aeruginosa.
    Martin PR; Watson AA; McCaul TF; Mattick JS
    Mol Microbiol; 1995 May; 16(3):497-508. PubMed ID: 7565110
    [TBL] [Abstract][Full Text] [Related]  

  • 18. RpoN-Dependent Direct Regulation of Quorum Sensing and the Type VI Secretion System in Pseudomonas aeruginosa PAO1.
    Shao X; Zhang X; Zhang Y; Zhu M; Yang P; Yuan J; Xie Y; Zhou T; Wang W; Chen S; Liang H; Deng X
    J Bacteriol; 2018 Aug; 200(16):. PubMed ID: 29760208
    [No Abstract]   [Full Text] [Related]  

  • 19. Structural basis of Zn(II) induced metal detoxification and antibiotic resistance by histidine kinase CzcS in Pseudomonas aeruginosa.
    Wang D; Chen W; Huang S; He Y; Liu X; Hu Q; Wei T; Sang H; Gan J; Chen H
    PLoS Pathog; 2017 Jul; 13(7):e1006533. PubMed ID: 28732057
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Functional characterization of the dguRABC locus for D-Glu and d-Gln utilization in Pseudomonas aeruginosa PAO1.
    He W; Li G; Yang CK; Lu CD
    Microbiology (Reading); 2014 Oct; 160(Pt 10):2331-2340. PubMed ID: 25082951
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 15.