These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

136 related articles for article (PubMed ID: 26114583)

  • 1. Amorphization and Directional Crystallization of Metals Confined in Carbon Nanotubes Investigated by in Situ Transmission Electron Microscopy.
    Tang DM; Ren CL; Lv R; Yu WJ; Hou PX; Wang MS; Wei X; Xu Z; Kawamoto N; Bando Y; Mitome M; Liu C; Cheng HM; Golberg D
    Nano Lett; 2015 Aug; 15(8):4922-7. PubMed ID: 26114583
    [TBL] [Abstract][Full Text] [Related]  

  • 2. The effects of confinement inside carbon nanotubes on catalysis.
    Pan X; Bao X
    Acc Chem Res; 2011 Aug; 44(8):553-62. PubMed ID: 21707038
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Structural changes in iron oxide and gold catalysts during nucleation of carbon nanotubes studied by in situ transmission electron microscopy.
    Tang DM; Liu C; Yu WJ; Zhang LL; Hou PX; Li JC; Li F; Bando Y; Golberg D; Cheng HM
    ACS Nano; 2014 Jan; 8(1):292-301. PubMed ID: 24354297
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Crystallization of TiO₂ Nanotubes by In Situ Heating TEM.
    Casu A; Lamberti A; Stassi S; Falqui A
    Nanomaterials (Basel); 2018 Jan; 8(1):. PubMed ID: 29342894
    [TBL] [Abstract][Full Text] [Related]  

  • 5. High temperature in-situ observations of multi-segmented metal nanowires encapsulated within carbon nanotubes by in-situ filling technique.
    Hayashi Y; Tokunaga T; Iijima T; Iwata T; Kalita G; Tanemura M; Sasaki K; Kuroda K
    Nanoscale Res Lett; 2012 Aug; 7(1):448. PubMed ID: 22873841
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Catalytic action of gold and copper crystals in the growth of carbon nanotubes.
    Tyagi PK; Janowska I; Cretu O; Pham-Huu C; Banhart F
    J Nanosci Nanotechnol; 2011 Apr; 11(4):3609-15. PubMed ID: 21776744
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Single-step synthesis of cobalt sulfide nanowires encapsulated in carbon nanotubes.
    Zhou Y; Zhu Y; Du G; Xu B
    J Nanosci Nanotechnol; 2013 Oct; 13(10):6934-9. PubMed ID: 24245167
    [TBL] [Abstract][Full Text] [Related]  

  • 8. In situ transmission electron microscopy investigation of the electrochemical lithiation-delithiation of individual Co9S8/Co-filled carbon nanotubes.
    Su Q; Du G; Zhang J; Zhong Y; Xu B; Yang Y; Neupane S; Kadel K; Li W
    ACS Nano; 2013 Dec; 7(12):11379-87. PubMed ID: 24251977
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Catalyst-Free
    Chen C; Chen Y; Zhu S; Dai J; Pastel G; Yao Y; Liu D; Wang Y; Wan J; Li T; Luo W; Hu L
    Research (Wash D C); 2018; 2018():1793784. PubMed ID: 31549023
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Highly confined water: two-dimensional ice, amorphous ice, and clathrate hydrates.
    Zhao WH; Wang L; Bai J; Yuan LF; Yang J; Zeng XC
    Acc Chem Res; 2014 Aug; 47(8):2505-13. PubMed ID: 25088018
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Lithiation of silicon nanoparticles confined in carbon nanotubes.
    Yu WJ; Liu C; Hou PX; Zhang L; Shan XY; Li F; Cheng HM
    ACS Nano; 2015 May; 9(5):5063-71. PubMed ID: 25869474
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Ordered arrays of magnetic metal nanotubes and nanowires encapsulated with carbon tubes.
    Gao C; Tao F; Lin W; Xu Z; Xue Z
    J Nanosci Nanotechnol; 2008 Sep; 8(9):4494-9. PubMed ID: 19049046
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Ab initio molecular dynamics simulations of water and an excess proton in water confined in carbon nanotubes.
    Clark JK; Paddison SJ
    Phys Chem Chem Phys; 2014 Sep; 16(33):17756-69. PubMed ID: 25030323
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Studies of nanocomposites of carbon nanotubes and a negative dielectric anisotropy liquid crystal.
    Kalakonda P; Basu R; Nemitz IR; Rosenblatt C; Iannacchione GS
    J Chem Phys; 2014 Mar; 140(10):104908. PubMed ID: 24628206
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Effect of confinement in carbon nanotubes on the activity of Fischer-Tropsch iron catalyst.
    Chen W; Fan Z; Pan X; Bao X
    J Am Chem Soc; 2008 Jul; 130(29):9414-9. PubMed ID: 18576652
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Enhanced graphitization of carbon around carbon nanotubes during the formation of carbon nanotube/graphite composites by pyrolysis of carbon nanotube/polyaniline composites.
    Nam DH; Cha SI; Jeong YJ; Hong SH
    J Nanosci Nanotechnol; 2013 Nov; 13(11):7365-9. PubMed ID: 24245256
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Direct growth of aligned carbon nanotubes on bulk metals.
    Talapatra S; Kar S; Pal SK; Vajtai R; Ci L; Victor P; Shaijumon MM; Kaur S; Nalamasu O; Ajayan PM
    Nat Nanotechnol; 2006 Nov; 1(2):112-6. PubMed ID: 18654161
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Template synthesis and growth mechanism of metal nanowire/carbon nanotube heterojunctions.
    Niu Z; Zhou W; Ma W; Dong H; Li J; Zhang X; Zeng Q; Xie S
    J Nanosci Nanotechnol; 2010 Nov; 10(11):7583-6. PubMed ID: 21137987
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Filling single-wall carbon nanotubes with d- and f-metal chloride and metal nanowires.
    Satishkumar BC; Taubert A; Luzzi DE
    J Nanosci Nanotechnol; 2003; 3(1-2):159-63. PubMed ID: 12908245
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Bottom-up Assembly of Poly(3-hexylthiophene) on Carbon Nanotubes: 2D Building Blocks for Nanoscale Circuits.
    Liu J; Zou J; Zhai L
    Macromol Rapid Commun; 2009 Aug; 30(16):1387-91. PubMed ID: 21638395
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.