BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

149 related articles for article (PubMed ID: 26115000)

  • 1. FEM simulation of tapered cap floating sleeve antenna for hepatocellular carcinoma therapy.
    Maini S
    Electromagn Biol Med; 2016; 35(2):152-60. PubMed ID: 26115000
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Modeling and simulation of novel antenna for the treatment of hepatocellular carcinoma using finite element method.
    Maini S; Marwaha A
    Electromagn Biol Med; 2013 Sep; 32(3):373-81. PubMed ID: 23324105
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Microwave ablation of ex vivo bovine tissues using a dual slot antenna with a floating metallic sleeve.
    Ibitoye AZ; Nwoye EO; Aweda AM; Oremosu AA; Anunobi CC; Akanmu NO
    Int J Hyperthermia; 2016 Dec; 32(8):923-930. PubMed ID: 27431435
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Optimization of dual slot antenna using floating metallic sleeve for microwave ablation.
    Ibitoye ZA; Nwoye EO; Aweda MA; Oremosu AA; Annunobi CC; Akanmu ON
    Med Eng Phys; 2015 Apr; 37(4):384-91. PubMed ID: 25686672
    [TBL] [Abstract][Full Text] [Related]  

  • 5. An optimal sliding choke antenna for hepatic microwave ablation.
    Prakash P; Converse MC; Webster JG; Mahvi DM
    IEEE Trans Biomed Eng; 2009 Oct; 56(10):2470-6. PubMed ID: 19535312
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Antenna design for microwave hepatic ablation using an axisymmetric electromagnetic model.
    Bertram JM; Yang D; Converse MC; Webster JG; Mahvi DM
    Biomed Eng Online; 2006 Feb; 5():15. PubMed ID: 16504153
    [TBL] [Abstract][Full Text] [Related]  

  • 7. A coaxial slot antenna with frequency of 433 MHz for microwave ablation therapies: design, simulation, and experimental research.
    Jiang Y; Zhao J; Li W; Yang Y; Liu J; Qian Z
    Med Biol Eng Comput; 2017 Nov; 55(11):2027-2036. PubMed ID: 28462497
    [TBL] [Abstract][Full Text] [Related]  

  • 8. A floating sleeve antenna yields localized hepatic microwave ablation.
    Yang D; Bertram JM; Converse MC; O'Rourke AP; Webster JG; Hagness SC; Will JA; Mahvi DM
    IEEE Trans Biomed Eng; 2006 Mar; 53(3):533-7. PubMed ID: 16532780
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Physical modeling of microwave ablation zone clinical margin variance.
    Deshazer G; Merck D; Hagmann M; Dupuy DE; Prakash P
    Med Phys; 2016 Apr; 43(4):1764. PubMed ID: 27036574
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Finite-element analysis and in vitro experiments of placement configurations using triple antennas in microwave hepatic ablation.
    Phasukkit P; Tungjitkusolmun S; Sangworasil M
    IEEE Trans Biomed Eng; 2009 Nov; 56(11):2564-72. PubMed ID: 19628446
    [TBL] [Abstract][Full Text] [Related]  

  • 11. A vector finite element approach to temperature dependent parameters of microwave ablation for liver cancer.
    Gangadhara B; Mariappan P
    Int J Numer Method Biomed Eng; 2023 Jan; 39(1):e3661. PubMed ID: 36385734
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Analysis of minimally invasive directional antennas for microwave tissue ablation.
    Sebek J; Curto S; Bortel R; Prakash P
    Int J Hyperthermia; 2017 Feb; 33(1):51-60. PubMed ID: 27380439
    [TBL] [Abstract][Full Text] [Related]  

  • 13. A Directional Interstitial Antenna for Microwave Tissue Ablation: Theoretical and Experimental Investigation.
    McWilliams BT; Schnell EE; Curto S; Fahrbach TM; Prakash P
    IEEE Trans Biomed Eng; 2015 Sep; 62(9):2144-50. PubMed ID: 25794385
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Reconfigurable tapered coaxial slot antenna for hepatic microwave ablation.
    Malhotra N; Marwaha A; Kumar A
    Electromagn Biol Med; 2016; 35(3):214-21. PubMed ID: 26147191
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Microwave ablation at 10.0 GHz achieves comparable ablation zones to 1.9 GHz in ex vivo bovine liver.
    Luyen H; Gao F; Hagness SC; Behdad N
    IEEE Trans Biomed Eng; 2014 Jun; 61(6):1702-10. PubMed ID: 24845280
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Development and microwave analysis of slot antennas for localized hyperthermia treatment of hepatocellular liver tumor.
    Zafar T; Zafar J; Zafar H
    Australas Phys Eng Sci Med; 2014 Dec; 37(4):673-9. PubMed ID: 25370955
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Design optimization of a robust sleeve antenna for hepatic microwave ablation.
    Prakash P; Deng G; Converse MC; Webster JG; Mahvi DM; Ferris MC
    Phys Med Biol; 2008 Feb; 53(4):1057-69. PubMed ID: 18263958
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Sensitivity of microwave ablation models to tissue biophysical properties: A first step toward probabilistic modeling and treatment planning.
    Sebek J; Albin N; Bortel R; Natarajan B; Prakash P
    Med Phys; 2016 May; 43(5):2649. PubMed ID: 27147374
    [TBL] [Abstract][Full Text] [Related]  

  • 19. A multi-slot coaxial microwave antenna for liver tumor ablation.
    Ge M; Jiang H; Huang X; Zhou Y; Zhi D; Zhao G; Chen Y; Wang L; Qiu B
    Phys Med Biol; 2018 Sep; 63(17):175011. PubMed ID: 30102247
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Modeling of interstitial microwave hyperthermia for hepatic tumors using floating sleeve antenna.
    Eltigani F; Ahmed S; Yahya M; Ahmed M
    Phys Eng Sci Med; 2022 Jun; 45(2):569-575. PubMed ID: 35426612
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.