BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

93 related articles for article (PubMed ID: 26115255)

  • 41. Genetic evaluation of the ratio of calf weaning weight to cow weight.
    MacNeil MD
    J Anim Sci; 2005 Apr; 83(4):794-802. PubMed ID: 15753333
    [TBL] [Abstract][Full Text] [Related]  

  • 42. Genetic analysis of gain from birth to weaning, milk production, and udder conformation in Line 1 Hereford cattle.
    MacNeil MD; Mott TB
    J Anim Sci; 2006 Jul; 84(7):1639-45. PubMed ID: 16775046
    [TBL] [Abstract][Full Text] [Related]  

  • 43. Genetic parameters for six measures of length of productive life and three measures of lifetime production by 6 yr after first calving for Hereford cows.
    Martinez GE; Koch RM; Cundiff LV; Gregory KE; Van Vleck LD
    J Anim Sci; 2004 Jul; 82(7):1912-8. PubMed ID: 15309936
    [TBL] [Abstract][Full Text] [Related]  

  • 44. Fitting genetic models using Markov Chain Monte Carlo algorithms with BUGS.
    van den Berg SM; Beem L; Boomsma DI
    Twin Res Hum Genet; 2006 Jun; 9(3):334-42. PubMed ID: 16790144
    [TBL] [Abstract][Full Text] [Related]  

  • 45. Multi-trait and random regression approaches for addressing the wide range of weaning ages in Asturiana de los Valles beef cattle for genetic parameter estimation.
    Menéndez-Buxadera A; Carleos C; Baro JA; Villa A; Cañón J
    J Anim Sci; 2008 Feb; 86(2):278-86. PubMed ID: 17998432
    [TBL] [Abstract][Full Text] [Related]  

  • 46. Age-of-dam adjustment factors for birth and weaning weight records of beef cattle: a review.
    Rumph JM; Van Vleck LD
    Genet Mol Res; 2004 Mar; 3(1):1-17. PubMed ID: 15100984
    [TBL] [Abstract][Full Text] [Related]  

  • 47. Genetic parameters for docility, weaning weight, yearling weight, and intramuscular fat percentage in Hereford cattle.
    Torres-Vázquez JA; Spangler ML
    J Anim Sci; 2016 Jan; 94(1):21-7. PubMed ID: 26812308
    [TBL] [Abstract][Full Text] [Related]  

  • 48. Fast genomic prediction of breeding values using parallel Markov chain Monte Carlo with convergence diagnosis.
    Guo P; Zhu B; Niu H; Wang Z; Liang Y; Chen Y; Zhang L; Ni H; Guo Y; Hay EHA; Gao X; Gao H; Wu X; Xu L; Li J
    BMC Bioinformatics; 2018 Jan; 19(1):3. PubMed ID: 29298666
    [TBL] [Abstract][Full Text] [Related]  

  • 49. Genetic parameter estimates for prenatal and postnatal mortality in Nellore cattle.
    Magalhães Silva LC; Baldi F; Aboujaoude C; Venturini GC; Albuquerque LG; Paranhos da Costa MJ
    J Anim Breed Genet; 2017 Feb; 134(1):27-33. PubMed ID: 27905150
    [TBL] [Abstract][Full Text] [Related]  

  • 50. Random regression analyses using B-spline functions to model growth of Nellore cattle.
    Boligon AA; Mercadante ME; Lôbo RB; Baldi F; Albuquerque LG
    Animal; 2012 Feb; 6(2):212-20. PubMed ID: 22436178
    [TBL] [Abstract][Full Text] [Related]  

  • 51. Bayesian analysis of twinning and ovulation rates using a multiple-trait threshold model and Gibbs sampling.
    Van Tassell CP; Van Vleck LD; Gregory KE
    J Anim Sci; 1998 Aug; 76(8):2048-61. PubMed ID: 9734854
    [TBL] [Abstract][Full Text] [Related]  

  • 52. Reduced-rank models of growth and reproductive traits in Nelore cattle.
    Boligon AA; Silveira FA; Silveira DD; Dionello NJ; Santana ML; Bignardi AB; Souza FR
    Theriogenology; 2015 May; 83(8):1338-43. PubMed ID: 25726150
    [TBL] [Abstract][Full Text] [Related]  

  • 53. Genetic associations between flight speed and growth traits in Nellore cattle.
    Sant'anna AC; Paranhos da Costa MJ; Baldi F; Rueda PM; Albuquerque LG
    J Anim Sci; 2012 Oct; 90(10):3427-32. PubMed ID: 22585807
    [TBL] [Abstract][Full Text] [Related]  

  • 54. Efficiency of alternative MCMC strategies illustrated using the reaction norm model.
    Shariati M; Sorensen D
    J Anim Breed Genet; 2008 Jun; 125(3):176-86. PubMed ID: 18479268
    [TBL] [Abstract][Full Text] [Related]  

  • 55. Influence of partitioning data by sex on genetic variance and covariance components for weaning weight in beef cattle.
    Lee C; Pollak EJ
    J Anim Sci; 1997 Jan; 75(1):61-7. PubMed ID: 9027549
    [TBL] [Abstract][Full Text] [Related]  

  • 56. Estimation and consequences of direct-maternal genetic and environmental covariances in models for genetic evaluation in broilers.
    Romé H; Chu TT; Marois D; Huang CH; Madsen P; Jensen J
    Genet Sel Evol; 2023 Aug; 55(1):58. PubMed ID: 37550635
    [TBL] [Abstract][Full Text] [Related]  

  • 57. Maternal genetic effects throughout the life of the dam in Pirenaica beef cattle. a random regression model approach.
    Ruzzon A; López-Carbonell D; Hervás-Rivero C; Srihi H; Mantovani R; Altarriba J; Varona L
    Animal; 2024 May; 18(7):101206. PubMed ID: 38905778
    [TBL] [Abstract][Full Text] [Related]  

  • 58. Estimating genetic covariance functions assuming a parametric correlation structure for environmental effects.
    Meyer K
    Genet Sel Evol; 2001; 33(6):557-85. PubMed ID: 11742630
    [TBL] [Abstract][Full Text] [Related]  

  • 59. The effect of selective reporting on estimates of weaning weight parameters in beef cattle.
    Mallinckrodt CH; Golden BL; Bourdon RM
    J Anim Sci; 1995 May; 73(5):1264-70. PubMed ID: 7665357
    [TBL] [Abstract][Full Text] [Related]  

  • 60. Using the difference in actual and expected calf liveweight relative to its dam liveweight as a statistic for interherd and intraherd benchmarking and genetic evaluations1.
    McHugh N; Evans RD; Berry DP
    J Anim Sci; 2019 Dec; 97(12):4737-4745. PubMed ID: 31628487
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 5.