These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

73 related articles for article (PubMed ID: 26115339)

  • 1. Impact assessment of emission management strategies of the pharmaceuticals Metformin and Metoprolol to the aquatic environment using Bayesian networks.
    Brandmayr C; Kerber H; Winker M; Schramm E
    Sci Total Environ; 2015 Nov; 532():605-16. PubMed ID: 26115339
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Prediction of carbamazepine in sewage treatment plant effluents and its implications for control strategies of pharmaceutical aquatic contamination.
    Zhang Y; Geissen SU
    Chemosphere; 2010 Sep; 80(11):1345-52. PubMed ID: 20594577
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Discharge of pharmaceutical products (PPs) through a conventional biological sewage treatment plant: MECs vs PECs?
    Coetsier CM; Spinelli S; Lin L; Roig B; Touraud E
    Environ Int; 2009 Jul; 35(5):787-92. PubMed ID: 19201471
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Derivation of water quality standards for carbamazepine, metoprolol, and metformin and comparison with monitoring data.
    Moermond CT; Smit CE
    Environ Toxicol Chem; 2016 Apr; 35(4):882-8. PubMed ID: 26211655
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Validation and sensitivity of the FINE Bayesian network for forecasting aquatic exposure to nano-silver.
    Money ES; Barton LE; Dawson J; Reckhow KH; Wiesner MR
    Sci Total Environ; 2014 Mar; 473-474():685-91. PubMed ID: 24412914
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Selected Pharmaceuticals in Different Aquatic Compartments: Part II-Toxicity and Environmental Risk Assessment.
    Pereira A; Silva L; Laranjeiro C; Lino C; Pena A
    Molecules; 2020 Apr; 25(8):. PubMed ID: 32295269
    [TBL] [Abstract][Full Text] [Related]  

  • 7. iSTREEM(®) : An approach for broad-scale in-stream exposure assessment of "down-the-drain" chemicals.
    Kapo KE; DeLeo PC; Vamshi R; Holmes CM; Ferrer D; Dyer SD; Wang X; White-Hull C
    Integr Environ Assess Manag; 2016 Oct; 12(4):782-92. PubMed ID: 27156081
    [TBL] [Abstract][Full Text] [Related]  

  • 8. The use of Bayesian networks for nanoparticle risk forecasting: model formulation and baseline evaluation.
    Money ES; Reckhow KH; Wiesner MR
    Sci Total Environ; 2012 Jun; 426():436-45. PubMed ID: 22521099
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Assessing wastewater micropollutant loads with approximate Bayesian computations.
    Rieckermann J; Anta J; Scheidegger A; Ort C
    Environ Sci Technol; 2011 May; 45(10):4399-406. PubMed ID: 21504210
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Initial ecological risk assessment of eight selected human pharmaceuticals in Japan.
    Yamamoto H; Nakamura Y; Nakamura Y; Kitani C; Imari T; Sekizawa J; Takao Y; Yamashita N; Hirai N; Oda S; Tatarazako N
    Environ Sci; 2007; 14(4):177-93. PubMed ID: 17762841
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Pollution pathways of pharmaceutical residues in the aquatic environment on the island of Mallorca, Spain.
    Rodríguez-Navas C; Björklund E; Bak SA; Hansen M; Krogh KA; Maya F; Forteza R; Cerdà V
    Arch Environ Contam Toxicol; 2013 Jul; 65(1):56-66. PubMed ID: 23440447
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Predicting variability of aquatic concentrations of human pharmaceuticals.
    Kostich MS; Batt AL; Glassmeyer ST; Lazorchak JM
    Sci Total Environ; 2010 Sep; 408(20):4504-10. PubMed ID: 20619877
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Pharmaceuticals in the aquatic environment--a comparison of risk assessment strategies.
    Bound JP; Voulvoulis N
    Chemosphere; 2004 Sep; 56(11):1143-55. PubMed ID: 15276728
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Cost assessment and ecological effectiveness of nutrient reduction options for mitigating Phaeocystis colony blooms in the Southern North Sea: an integrated modeling approach.
    Lancelot C; Thieu V; Polard A; Garnier J; Billen G; Hecq W; Gypens N
    Sci Total Environ; 2011 May; 409(11):2179-91. PubMed ID: 21439607
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Emerging Pollutants - Part II: Treatment.
    Bo L; Shengen Z; Chang CC
    Water Environ Res; 2016 Oct; 88(10):1876-904. PubMed ID: 27620112
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Occurrence and reductions of pharmaceuticals and personal care products and estrogens by municipal wastewater treatment plants in Ontario, Canada.
    Lishman L; Smyth SA; Sarafin K; Kleywegt S; Toito J; Peart T; Lee B; Servos M; Beland M; Seto P
    Sci Total Environ; 2006 Aug; 367(2-3):544-58. PubMed ID: 16697441
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Ranking of concern, based on environmental indexes, for pharmaceutical and personal care products: an application to the Spanish case.
    Ortiz de García S; Pinto GP; García-Encina PA; Irusta Mata RI
    J Environ Manage; 2013 Nov; 129():384-97. PubMed ID: 23995140
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Aquatic processes and systems in perspective.
    Peck AM; Hornbuckle KC
    J Environ Monit; 2006 Sep; 8(9):874-9. PubMed ID: 16951746
    [No Abstract]   [Full Text] [Related]  

  • 19. Ranking potential impacts of priority and emerging pollutants in urban wastewater through life cycle impact assessment.
    Muñoz I; José Gómez M; Molina-Díaz A; Huijbregts MA; Fernández-Alba AR; García-Calvo E
    Chemosphere; 2008 Dec; 74(1):37-44. PubMed ID: 18951608
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Occurrence and removal of pharmaceuticals in wastewater treatment plants at the Spanish Mediterranean area of Valencia.
    Gracia-Lor E; Sancho JV; Serrano R; Hernández F
    Chemosphere; 2012 Apr; 87(5):453-62. PubMed ID: 22221664
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 4.