BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

272 related articles for article (PubMed ID: 26115418)

  • 1. Experimental and DFT Studies Explain Solvent Control of C-H Activation and Product Selectivity in the Rh(III)-Catalyzed Formation of Neutral and Cationic Heterocycles.
    Davies DL; Ellul CE; Macgregor SA; McMullin CL; Singh K
    J Am Chem Soc; 2015 Aug; 137(30):9659-69. PubMed ID: 26115418
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Rh(III)-catalyzed C-H activation/cyclization of indoles and pyrroles: divergent synthesis of heterocycles.
    Zhang Y; Zheng J; Cui S
    J Org Chem; 2014 Jul; 79(14):6490-500. PubMed ID: 24949803
    [TBL] [Abstract][Full Text] [Related]  

  • 3. α-MsO/TsO/Cl ketones as oxidized alkyne equivalents: redox-neutral rhodium(III)-catalyzed C-H activation for the synthesis of N-heterocycles.
    Yu DG; de Azambuja F; Glorius F
    Angew Chem Int Ed Engl; 2014 Mar; 53(10):2754-8. PubMed ID: 24488682
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Pyridine N-Oxide vs Pyridine Substrates for Rh(III)-Catalyzed Oxidative C-H Bond Functionalization.
    Neufeldt SR; Jiménez-Osés G; Huckins JR; Thiel OR; Houk KN
    J Am Chem Soc; 2015 Aug; 137(31):9843-54. PubMed ID: 26197041
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Conjugate addition vs Heck reaction: a theoretical study on competitive coupling catalyzed by isoelectronic metal (Pd(II) and Rh(I)).
    Peng Q; Yan H; Zhang X; Wu YD
    J Org Chem; 2012 Sep; 77(17):7487-96. PubMed ID: 22876853
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Mechanistic insight into conjugated N-N bond cleavage by Rh(III)-catalyzed redox-neutral C-H activation of pyrazolones.
    Wu W; Liu Y; Bi S
    Org Biomol Chem; 2015 Aug; 13(30):8251-60. PubMed ID: 26138233
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Reversible C-C bond activation enables stereocontrol in Rh-catalyzed carbonylative cycloadditions of aminocyclopropanes.
    Shaw MH; McCreanor NG; Whittingham WG; Bower JF
    J Am Chem Soc; 2015 Jan; 137(1):463-8. PubMed ID: 25539136
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Mechanism, reactivity, and selectivity in Rh(III)-catalyzed phosphoryl-directed oxidative C-H activation/cyclization: a DFT study.
    Liu LL; Wu Y; Wang T; Gao X; Zhu J; Zhao Y
    J Org Chem; 2014 Jun; 79(11):5074-81. PubMed ID: 24815788
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Rhodium(III)-catalyzed direct selective C(5)-H oxidative annulations of 2-substituted imidazoles and alkynes by double C-H activation.
    Huang JR; Zhang QR; Qu CH; Sun XH; Dong L; Chen YC
    Org Lett; 2013 Apr; 15(8):1878-81. PubMed ID: 23537406
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Stereodivergent Synthesis of N-Heterocycles by Catalyst-Controlled, Activity-Directed Tandem Annulation of Diazo Compounds with Amino Alkynes.
    Liu K; Zhu C; Min J; Peng S; Xu G; Sun J
    Angew Chem Int Ed Engl; 2015 Oct; 54(44):12962-7. PubMed ID: 26350164
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Combined experimental and computational investigations of rhodium- and ruthenium-catalyzed C-H functionalization of pyrazoles with alkynes.
    Algarra AG; Cross WB; Davies DL; Khamker Q; Macgregor SA; McMullin CL; Singh K
    J Org Chem; 2014 Mar; 79(5):1954-70. PubMed ID: 24564771
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Origins of the selectivity for borylation of primary over secondary C-H bonds catalyzed by Cp*-rhodium complexes.
    Wei CS; Jiménez-Hoyos CA; Videa MF; Hartwig JF; Hall MB
    J Am Chem Soc; 2010 Mar; 132(9):3078-91. PubMed ID: 20121104
    [TBL] [Abstract][Full Text] [Related]  

  • 13. A theoretical study on the trans-addition intramolecular hydroacylation of 4-alkynals catalyzed by cationic rhodium complexes.
    Chung LW; Wiest O; Wu YD
    J Org Chem; 2008 Apr; 73(7):2649-55. PubMed ID: 18324834
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Delta-sultone formation through Rh-catalyzed C-H insertion.
    Wolckenhauer SA; Devlin AS; Bois JD
    Org Lett; 2007 Oct; 9(21):4363-6. PubMed ID: 17887696
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Rh-catalyzed (5+2) cycloadditions of 3-acyloxy-1,4-enynes and alkynes: computational study of mechanism, reactivity, and regioselectivity.
    Xu X; Liu P; Shu XZ; Tang W; Houk KN
    J Am Chem Soc; 2013 Jun; 135(25):9271-4. PubMed ID: 23725341
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Mechanism and origins of ligand-controlled selectivities in [Ni(NHC)]-catalyzed intramolecular (5 + 2) cycloadditions and homo-ene reactions: a theoretical study.
    Hong X; Liu P; Houk KN
    J Am Chem Soc; 2013 Jan; 135(4):1456-62. PubMed ID: 23273283
    [TBL] [Abstract][Full Text] [Related]  

  • 17. P(CH)P pincer rhodium(I) complexes: the key role of electron-poor imidazoliophosphine extremities.
    Barthes C; Lepetit C; Canac Y; Duhayon C; Zargarian D; Chauvin R
    Inorg Chem; 2013 Jan; 52(1):48-58. PubMed ID: 23259509
    [TBL] [Abstract][Full Text] [Related]  

  • 18. A convenient synthesis of quinolizinium salts through Rh(III) or Ru(II)-catalyzed C-H bond activation of 2-alkenylpyridines.
    Luo CZ; Gandeepan P; Cheng CH
    Chem Commun (Camb); 2013 Oct; 49(76):8528-30. PubMed ID: 23938459
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Ligand-controlled regioselectivity in the hydrothiolation of alkynes by rhodium N-heterocyclic carbene catalysts.
    Di Giuseppe A; Castarlenas R; Pérez-Torrente JJ; Crucianelli M; Polo V; Sancho R; Lahoz FJ; Oro LA
    J Am Chem Soc; 2012 May; 134(19):8171-83. PubMed ID: 22536797
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Rhodium(III)-catalyzed heterocycle synthesis using an internal oxidant: improved reactivity and mechanistic studies.
    Guimond N; Gorelsky SI; Fagnou K
    J Am Chem Soc; 2011 Apr; 133(16):6449-57. PubMed ID: 21452842
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 14.