BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

225 related articles for article (PubMed ID: 26115785)

  • 1. New approaches for understanding the nuclear force balance in living, adherent cells.
    Neelam S; Dickinson RB; Lele TP
    Methods; 2016 Feb; 94():27-32. PubMed ID: 26115785
    [TBL] [Abstract][Full Text] [Related]  

  • 2. The nucleus is an intracellular propagator of tensile forces in NIH 3T3 fibroblasts.
    Alam SG; Lovett D; Kim DI; Roux KJ; Dickinson RB; Lele TP
    J Cell Sci; 2015 May; 128(10):1901-11. PubMed ID: 25908852
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Cytoskeletal control of nuclear migration in neurons and non-neuronal cells.
    Kengaku M
    Proc Jpn Acad Ser B Phys Biol Sci; 2018; 94(9):337-349. PubMed ID: 30416174
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Nesprin-2G, a Component of the Nuclear LINC Complex, Is Subject to Myosin-Dependent Tension.
    Arsenovic PT; Ramachandran I; Bathula K; Zhu R; Narang JD; Noll NA; Lemmon CA; Gundersen GG; Conway DE
    Biophys J; 2016 Jan; 110(1):34-43. PubMed ID: 26745407
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Mechanical Function of the Nucleus in Force Generation during Epithelial Morphogenesis.
    Ambrosini A; Rayer M; Monier B; Suzanne M
    Dev Cell; 2019 Jul; 50(2):197-211.e5. PubMed ID: 31204174
    [TBL] [Abstract][Full Text] [Related]  

  • 6. In silico CDM model sheds light on force transmission in cell from focal adhesions to nucleus.
    Milan JL; Manifacier I; Beussman KM; Han SJ; Sniadecki NJ; About I; Chabrand P
    J Biomech; 2016 Sep; 49(13):2625-2634. PubMed ID: 27298154
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Direct force probe reveals the mechanics of nuclear homeostasis in the mammalian cell.
    Neelam S; Chancellor TJ; Li Y; Nickerson JA; Roux KJ; Dickinson RB; Lele TP
    Proc Natl Acad Sci U S A; 2015 May; 112(18):5720-5. PubMed ID: 25901323
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Centrifugal Displacement of Nuclei Reveals Multiple LINC Complex Mechanisms for Homeostatic Nuclear Positioning.
    Zhu R; Antoku S; Gundersen GG
    Curr Biol; 2017 Oct; 27(20):3097-3110.e5. PubMed ID: 28988861
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Actomyosin and vimentin cytoskeletal networks regulate nuclear shape, mechanics and chromatin organization.
    Keeling MC; Flores LR; Dodhy AH; Murray ER; Gavara N
    Sci Rep; 2017 Jul; 7(1):5219. PubMed ID: 28701767
    [TBL] [Abstract][Full Text] [Related]  

  • 10. A network of nuclear envelope proteins and cytoskeletal force generators mediates movements of and within nuclei throughout
    Starr DA
    Exp Biol Med (Maywood); 2019 Nov; 244(15):1323-1332. PubMed ID: 31495194
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Cytoskeletal prestress regulates nuclear shape and stiffness in cardiac myocytes.
    Lee H; Adams WJ; Alford PW; McCain ML; Feinberg AW; Sheehy SP; Goss JA; Parker KK
    Exp Biol Med (Maywood); 2015 Nov; 240(11):1543-54. PubMed ID: 25908635
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Dynamic, mechanical integration between nucleus and cell- where physics meets biology.
    Dickinson RB; Neelam S; Lele TP
    Nucleus; 2015; 6(5):360-5. PubMed ID: 26338356
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Changes in Nuclear Shape and Gene Expression in Response to Simulated Microgravity Are LINC Complex-Dependent.
    Neelam S; Richardson B; Barker R; Udave C; Gilroy S; Cameron MJ; Levine HG; Zhang Y
    Int J Mol Sci; 2020 Sep; 21(18):. PubMed ID: 32942630
    [TBL] [Abstract][Full Text] [Related]  

  • 14. A Direct Force Probe for Measuring Mechanical Integration Between the Nucleus and the Cytoskeleton.
    Zhang Q; Tamashunas AC; Lele TP
    J Vis Exp; 2018 Jul; (137):. PubMed ID: 30102282
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Nesprin-3: a versatile connector between the nucleus and the cytoskeleton.
    Ketema M; Sonnenberg A
    Biochem Soc Trans; 2011 Dec; 39(6):1719-24. PubMed ID: 22103514
    [TBL] [Abstract][Full Text] [Related]  

  • 16. The role of the cell nucleus in mechanotransduction.
    Janota CS; Calero-Cuenca FJ; Gomes ER
    Curr Opin Cell Biol; 2020 Apr; 63():204-211. PubMed ID: 32361559
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Probing cytoskeletal pre-stress and nuclear mechanics in endothelial cells with spatiotemporally controlled (de-)adhesion kinetics on micropatterned substrates.
    Versaevel M; Riaz M; Corne T; Grevesse T; Lantoine J; Mohammed D; Bruyère C; Alaimo L; De Vos WH; Gabriele S
    Cell Adh Migr; 2017 Jan; 11(1):98-109. PubMed ID: 27111836
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Local traction force in the proximal leading process triggers nuclear translocation during neuronal migration.
    Umeshima H; Nomura KI; Yoshikawa S; Hörning M; Tanaka M; Sakuma S; Arai F; Kaneko M; Kengaku M
    Neurosci Res; 2019 May; 142():38-48. PubMed ID: 29627503
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Nuclear mechanics and mechanotransduction in health and disease.
    Isermann P; Lammerding J
    Curr Biol; 2013 Dec; 23(24):R1113-21. PubMed ID: 24355792
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Connecting the nucleus to the cytoskeleton for nuclear positioning and cell migration.
    Osorio DS; Gomes ER
    Adv Exp Med Biol; 2014; 773():505-20. PubMed ID: 24563363
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 12.