These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
197 related articles for article (PubMed ID: 26116029)
1. 4,4'-Methylenedianiline Alters Serotonergic Transport in a Novel, Sex-Specific Model of Pulmonary Arterial Hypertension in Rats. Carroll-Turpin M; Hebert V; Chotibut T; Wensler H; Krentzel D; Varner KJ; Burn BR; Chen YF; Abreo F; Dugas TR Toxicol Sci; 2015 Sep; 147(1):235-45. PubMed ID: 26116029 [TBL] [Abstract][Full Text] [Related]
2. Role of COX-2 in the bioactivation of methylenedianiline and in its proliferative effects in vascular smooth muscle cells. Hebert VY; Jones BC; Mifflin RC; Dugas TR Cardiovasc Toxicol; 2011 Dec; 11(4):316-24. PubMed ID: 21720929 [TBL] [Abstract][Full Text] [Related]
3. Vascular medial hyperplasia following chronic, intermittent exposure to 4,4'-methylenedianiline. Dugas TR; Kanz MF; Hebert VY; Hennard KL; Liu H; Santa Cruz V; Conklin D; Boor PJ Cardiovasc Toxicol; 2004; 4(1):85-96. PubMed ID: 15034207 [TBL] [Abstract][Full Text] [Related]
4. Endothelial nitric oxide synthase-enhancing G-protein coupled receptor antagonist inhibits pulmonary artery hypertension by endothelin-1-dependent and endothelin-1-independent pathways in a monocrotaline model. Liu CP; Dai ZK; Huang CH; Yeh JL; Wu BN; Wu JR; Chen IJ Kaohsiung J Med Sci; 2014 Jun; 30(6):267-78. PubMed ID: 24835346 [TBL] [Abstract][Full Text] [Related]
5. The serotonin transporter, gender, and 17β oestradiol in the development of pulmonary arterial hypertension. White K; Dempsie Y; Nilsen M; Wright AF; Loughlin L; MacLean MR Cardiovasc Res; 2011 May; 90(2):373-82. PubMed ID: 21177701 [TBL] [Abstract][Full Text] [Related]
6. NMDA-Type Glutamate Receptor Activation Promotes Vascular Remodeling and Pulmonary Arterial Hypertension. Dumas SJ; Bru-Mercier G; Courboulin A; Quatredeniers M; Rücker-Martin C; Antigny F; Nakhleh MK; Ranchoux B; Gouadon E; Vinhas MC; Vocelle M; Raymond N; Dorfmüller P; Fadel E; Perros F; Humbert M; Cohen-Kaminsky S Circulation; 2018 May; 137(22):2371-2389. PubMed ID: 29444988 [TBL] [Abstract][Full Text] [Related]
7. Activity of the estrogen-metabolizing enzyme cytochrome P450 1B1 influences the development of pulmonary arterial hypertension. White K; Johansen AK; Nilsen M; Ciuclan L; Wallace E; Paton L; Campbell A; Morecroft I; Loughlin L; McClure JD; Thomas M; Mair KM; MacLean MR Circulation; 2012 Aug; 126(9):1087-98. PubMed ID: 22859684 [TBL] [Abstract][Full Text] [Related]
8. Let-7a-transfected mesenchymal stem cells ameliorate monocrotaline-induced pulmonary hypertension by suppressing pulmonary artery smooth muscle cell growth through STAT3-BMPR2 signaling. Cheng G; Wang X; Li Y; He L Stem Cell Res Ther; 2017 Feb; 8(1):34. PubMed ID: 28187784 [TBL] [Abstract][Full Text] [Related]
10. Glycyrrhizin, inhibitor of high mobility group box-1, attenuates monocrotaline-induced pulmonary hypertension and vascular remodeling in rats. Yang PS; Kim DH; Lee YJ; Lee SE; Kang WJ; Chang HJ; Shin JS Respir Res; 2014 Nov; 15():148. PubMed ID: 25420924 [TBL] [Abstract][Full Text] [Related]
11. Plexiform-like lesions and increased tissue factor expression in a rat model of severe pulmonary arterial hypertension. White RJ; Meoli DF; Swarthout RF; Kallop DY; Galaria II; Harvey JL; Miller CM; Blaxall BC; Hall CM; Pierce RA; Cool CD; Taubman MB Am J Physiol Lung Cell Mol Physiol; 2007 Sep; 293(3):L583-90. PubMed ID: 17586694 [TBL] [Abstract][Full Text] [Related]
12. Upregulation of profilin, cofilin-2 and LIMK2 in cultured pulmonary artery smooth muscle cells and in pulmonary arteries of monocrotaline-treated rats. Dai YP; Bongalon S; Tian H; Parks SD; Mutafova-Yambolieva VN; Yamboliev IA Vascul Pharmacol; 2006 May; 44(5):275-82. PubMed ID: 16524786 [TBL] [Abstract][Full Text] [Related]
13. Mitochondrial dysfunction occurs before transport or tight junction deficits in biliary epithelial cells exposed to bile from methylenedianiline-treated rats. Santa Cruz V; Dugas TR; Kanz MF Toxicol Sci; 2005 Mar; 84(1):129-38. PubMed ID: 15601676 [TBL] [Abstract][Full Text] [Related]
14. P21-dependent protective effects of a carbon monoxide-releasing molecule-3 in pulmonary hypertension. Abid S; Houssaïni A; Mouraret N; Marcos E; Amsellem V; Wan F; Dubois-Randé JL; Derumeaux G; Boczkowski J; Motterlini R; Adnot S Arterioscler Thromb Vasc Biol; 2014 Feb; 34(2):304-12. PubMed ID: 24334871 [TBL] [Abstract][Full Text] [Related]
15. Evaluation of the gender differences in 4,4'-methylenedianiline toxicity, distribution, and effects on biliary parameters. Dugas TR; Santa Cruz V; Liu H; Kanz MF J Toxicol Environ Health A; 2001 Mar; 62(6):467-83. PubMed ID: 11289319 [TBL] [Abstract][Full Text] [Related]
16. Effects of methylenedianiline on tight junction permeability of biliary epithelial cells in vivo and in vitro. Santa Cruz V; Liu H; Kaphalia L; Kanz MF Toxicol Lett; 2007 Feb; 169(1):13-25. PubMed ID: 17178199 [TBL] [Abstract][Full Text] [Related]
18. Tetrandrine prevents monocrotaline-induced pulmonary arterial hypertension in rats through regulation of the protein expression of inducible nitric oxide synthase and cyclic guanosine monophosphate-dependent protein kinase type 1. Wang X; Yang Y; Yang D; Tong G; Lv S; Lin X; Chen C; Dong W J Vasc Surg; 2016 Nov; 64(5):1468-1477. PubMed ID: 26527422 [TBL] [Abstract][Full Text] [Related]
19. The Role of Sex in the Pathophysiology of Pulmonary Hypertension. Docherty CK; Harvey KY; Mair KM; Griffin S; Denver N; MacLean MR Adv Exp Med Biol; 2018; 1065():511-528. PubMed ID: 30051404 [TBL] [Abstract][Full Text] [Related]
20. Quercetin reverses experimental pulmonary arterial hypertension by modulating the TrkA pathway. He Y; Cao X; Liu X; Li X; Xu Y; Liu J; Shi J Exp Cell Res; 2015 Nov; 339(1):122-34. PubMed ID: 26476374 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]