These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

181 related articles for article (PubMed ID: 26116136)

  • 1. Genetic profiling of yeast industrial strains using in situ comparative genomic hybridization (CGH).
    Wnuk M; Panek A; Golec E; Magda M; Deregowska A; Adamczyk J; Lewinska A
    J Biotechnol; 2015 Sep; 210():52-6. PubMed ID: 26116136
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Comparative genomics of wild type yeast strains unveils important genome diversity.
    Carreto L; Eiriz MF; Gomes AC; Pereira PM; Schuller D; Santos MA
    BMC Genomics; 2008 Nov; 9():524. PubMed ID: 18983662
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Genome-wide array-CGH analysis reveals YRF1 gene copy number variation that modulates genetic stability in distillery yeasts.
    Deregowska A; Skoneczny M; Adamczyk J; Kwiatkowska A; Rawska E; Skoneczna A; Lewinska A; Wnuk M
    Oncotarget; 2015 Oct; 6(31):30650-63. PubMed ID: 26384347
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Microarray karyotyping of commercial wine yeast strains reveals shared, as well as unique, genomic signatures.
    Dunn B; Levine RP; Sherlock G
    BMC Genomics; 2005 Apr; 6():53. PubMed ID: 15833139
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Genome sequencing and genetic breeding of a bioethanol Saccharomyces cerevisiae strain YJS329.
    Zheng DQ; Wang PM; Chen J; Zhang K; Liu TZ; Wu XC; Li YD; Zhao YH
    BMC Genomics; 2012 Sep; 13():479. PubMed ID: 22978491
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Whole Genome Comparison Reveals High Levels of Inbreeding and Strain Redundancy Across the Spectrum of Commercial Wine Strains of Saccharomyces cerevisiae.
    Borneman AR; Forgan AH; Kolouchova R; Fraser JA; Schmidt SA
    G3 (Bethesda); 2016 Apr; 6(4):957-71. PubMed ID: 26869621
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Induction, separation and identification of haploid strains from industrial brewer's yeast.
    Xu W; Wang J; Li Q
    Wei Sheng Wu Xue Bao; 2015 Jan; 55(1):22-32. PubMed ID: 25958679
    [TBL] [Abstract][Full Text] [Related]  

  • 8. A new approach to species determination for yeast strains: DNA microarray-based comparative genomic hybridization using a yeast DNA microarray with 6000 genes.
    Watanabe T; Murata Y; Oka S; Iwahashi H
    Yeast; 2004 Mar; 21(4):351-65. PubMed ID: 15042595
    [TBL] [Abstract][Full Text] [Related]  

  • 9. The impact of genomic variability on gene expression in environmental Saccharomyces cerevisiae strains.
    Treu L; Toniolo C; Nadai C; Sardu A; Giacomini A; Corich V; Campanaro S
    Environ Microbiol; 2014 May; 16(5):1378-97. PubMed ID: 24238297
    [TBL] [Abstract][Full Text] [Related]  

  • 10. From yeast genetics to biotechnology.
    Maráz A
    Acta Microbiol Immunol Hung; 2002; 49(4):483-91. PubMed ID: 12512257
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Comparative genome hybridization on tiling microarrays to detect aneuploidies in yeast.
    Dion B; Brown GW
    Methods Mol Biol; 2009; 548():1-18. PubMed ID: 19521816
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Affected chromosome homeostasis and genomic instability of clonal yeast cultures.
    Adamczyk J; Deregowska A; Panek A; Golec E; Lewinska A; Wnuk M
    Curr Genet; 2016 May; 62(2):405-18. PubMed ID: 26581629
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Antioxidant N-acetyltransferase Mpr1/2 of industrial baker's yeast enhances fermentation ability after air-drying stress in bread dough.
    Sasano Y; Takahashi S; Shima J; Takagi H
    Int J Food Microbiol; 2010 Mar; 138(1-2):181-5. PubMed ID: 20096471
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Comparative functional genomics to reveal the molecular basis of phenotypic diversities and guide the genetic breeding of industrial yeast strains.
    Zheng DQ; Liu TZ; Chen J; Zhang K; Li O; Zhu L; Zhao YH; Wu XC; Wang PM
    Appl Microbiol Biotechnol; 2013 Mar; 97(5):2067-76. PubMed ID: 23344998
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Functional genomic analysis of commercial baker's yeast during initial stages of model dough-fermentation.
    Tanaka F; Ando A; Nakamura T; Takagi H; Shima J
    Food Microbiol; 2006 Dec; 23(8):717-28. PubMed ID: 16943074
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Analysis of the Saccharomyces cerevisiae pan-genome reveals a pool of copy number variants distributed in diverse yeast strains from differing industrial environments.
    Dunn B; Richter C; Kvitek DJ; Pugh T; Sherlock G
    Genome Res; 2012 May; 22(5):908-24. PubMed ID: 22369888
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Novel starters for old processes: use of Saccharomyces cerevisiae strains isolated from artisanal sourdough for craft beer production at a brewery scale.
    Marongiu A; Zara G; Legras JL; Del Caro A; Mascia I; Fadda C; Budroni M
    J Ind Microbiol Biotechnol; 2015 Jan; 42(1):85-92. PubMed ID: 25387611
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Single-cell analysis of aneuploidy events using yeast whole chromosome painting probes (WCPPs).
    Wnuk M; Miedziak B; Kulak K; Panek A; Golec E; Deregowska A; Adamczyk J; Lewinska A
    J Microbiol Methods; 2015 Apr; 111():40-9. PubMed ID: 25639739
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Stress tolerance: the key to effective strains of industrial baker's yeast.
    Attfield PV
    Nat Biotechnol; 1997 Dec; 15(13):1351-7. PubMed ID: 9415886
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Comparative genome analysis of a Saccharomyces cerevisiae wine strain.
    Borneman AR; Forgan AH; Pretorius IS; Chambers PJ
    FEMS Yeast Res; 2008 Nov; 8(7):1185-95. PubMed ID: 18778279
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 10.