These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
119 related articles for article (PubMed ID: 26116187)
1. Use of isopycnic plots to understand the role of density in SFC - I. Effect of pressure variation on retention factors. Tarafder A; Hill JF; Iraneta PC; Fountain KJ J Chromatogr A; 2015 Aug; 1406():316-23. PubMed ID: 26116187 [TBL] [Abstract][Full Text] [Related]
2. Use of isopycnic plots in designing operations of supercritical fluid chromatography: II. The isopycnic plots and the selection of the operating pressure-temperature zone in supercritical fluid chromatography. Tarafder A; Guiochon G J Chromatogr A; 2011 Jul; 1218(28):4576-85. PubMed ID: 21658698 [TBL] [Abstract][Full Text] [Related]
3. Effect of density on kinetic performance in supercritical fluid chromatography with methanol modified carbon dioxide. Berger TA J Chromatogr A; 2018 Aug; 1564():188-198. PubMed ID: 29929869 [TBL] [Abstract][Full Text] [Related]
4. Use of isopycnic plots in designing operations of supercritical fluid chromatography: I. The critical role of density in determining the characteristics of the mobile phase in supercritical fluid chromatography. Tarafder A; Guiochon G J Chromatogr A; 2011 Jul; 1218(28):4569-75. PubMed ID: 21652036 [TBL] [Abstract][Full Text] [Related]
5. Use of isopycnic plots in designing operations of supercritical fluid chromatography. III: reason for the low column efficiency in the critical region. Tarafder A; Guiochon G J Chromatogr A; 2011 Oct; 1218(40):7189-95. PubMed ID: 21890144 [TBL] [Abstract][Full Text] [Related]
6. Density dependence of retention factors of trans-stilbene oxide for chiral separation by supercritical fluid chromatography. Funazukuri T; Ono Y; Sakabe J; Kong CY J Chromatogr A; 2017 Dec; 1527():91-96. PubMed ID: 29100613 [TBL] [Abstract][Full Text] [Related]
7. Possibilities and limitations of the kinetic plot method in supercritical fluid chromatography. De Pauw R; Desmet G; Broeckhoven K J Chromatogr A; 2013 Aug; 1305():300-9. PubMed ID: 23890550 [TBL] [Abstract][Full Text] [Related]
8. Method developments approaches in supercritical fluid chromatography applied to the analysis of cosmetics. Lesellier E; Mith D; Dubrulle I J Chromatogr A; 2015 Dec; 1423():158-68. PubMed ID: 26553956 [TBL] [Abstract][Full Text] [Related]
9. Use of the isopycnic plots in designing operations of supercritical fluid chromatography. V. Pressure and density drops using mixtures of carbon dioxide and methanol as the mobile phase. Tarafder A; Kaczmarski K; Poe DP; Guiochon G J Chromatogr A; 2012 Oct; 1258():136-51. PubMed ID: 22935727 [TBL] [Abstract][Full Text] [Related]
10. The many faces of packed column supercritical fluid chromatography--a critical review. Lesellier E; West C J Chromatogr A; 2015 Feb; 1382():2-46. PubMed ID: 25604272 [TBL] [Abstract][Full Text] [Related]
11. A closer study of methanol adsorption and its impact on solute retentions in supercritical fluid chromatography. Glenne E; Öhlén K; Leek H; Klarqvist M; Samuelsson J; Fornstedt T J Chromatogr A; 2016 Apr; 1442():129-39. PubMed ID: 26979267 [TBL] [Abstract][Full Text] [Related]
12. Preliminary kinetic evaluation of an immobilized polysaccharide sub-2μm column using a low dispersion supercritical fluid chromatograph. Berger TA J Chromatogr A; 2017 Aug; 1510():82-88. PubMed ID: 28652002 [TBL] [Abstract][Full Text] [Related]
13. Effect of reference conditions on flow rate, modifier fraction and retention in supercritical fluid chromatography. De Pauw R; Shoykhet Choikhet K; Desmet G; Broeckhoven K J Chromatogr A; 2016 Aug; 1459():129-135. PubMed ID: 27401813 [TBL] [Abstract][Full Text] [Related]
14. Accurate measurements of experimental parameters in supercritical fluid chromatography. I. Extent of variations of the mass and volumetric flow rates. Tarafder A; Guiochon G J Chromatogr A; 2013 Apr; 1285():148-58. PubMed ID: 23477796 [TBL] [Abstract][Full Text] [Related]
15. Pressure, temperature and density drops along supercritical fluid chromatography columns in different thermal environments. III. Mixtures of carbon dioxide and methanol as the mobile phase. Poe DP; Veit D; Ranger M; Kaczmarski K; Tarafder A; Guiochon G J Chromatogr A; 2014 Jan; 1323():143-56. PubMed ID: 24315126 [TBL] [Abstract][Full Text] [Related]
16. Feasibility of correlating separation of ternary mixtures of neutral analytes via thin layer chromatography with supercritical fluid chromatography in support of green flash separations. Ashraf-Khorassani M; Yan Q; Akin A; Riley F; Aurigemma C; Taylor LT J Chromatogr A; 2015 Oct; 1418():210-217. PubMed ID: 26422305 [TBL] [Abstract][Full Text] [Related]
17. Kinetic behaviour in supercritical fluid chromatography with modified mobile phase for 5 μm particle size and varied flow rates. Lesellier E; Fougere L; Poe DP J Chromatogr A; 2011 Apr; 1218(15):2058-64. PubMed ID: 21232748 [TBL] [Abstract][Full Text] [Related]
18. Temperature effects in supercritical fluid chromatography: a trade-off between viscous heating and decompression cooling. De Pauw R; Choikhet K; Desmet G; Broeckhoven K J Chromatogr A; 2014 Oct; 1365():212-8. PubMed ID: 25262033 [TBL] [Abstract][Full Text] [Related]
19. Effect of system variables involved in packed column supercritical fluid chromatography of stavudine taken as model analyte using response surface methodology along with study of thermodynamic parameters. Kaul N; Agrawal H; Paradkar AR; Mahadik KR J Pharm Biomed Anal; 2007 Jan; 43(2):471-80. PubMed ID: 16935453 [TBL] [Abstract][Full Text] [Related]
20. Instrument modifications that produced reduced plate heights <2 with sub-2 μm particles and 95% of theoretical efficiency at k=2 in supercritical fluid chromatography. Berger TA J Chromatogr A; 2016 Apr; 1444():129-44. PubMed ID: 27046003 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]