These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

175 related articles for article (PubMed ID: 26116202)

  • 1. Additional Navigational Strategies Can Augment Odor-Gated Rheotaxis for Navigation under Conditions of Variable Flow.
    Vasey G; Lukeman R; Wyeth RC
    Integr Comp Biol; 2015 Sep; 55(3):447-60. PubMed ID: 26116202
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Sharks need the lateral line to locate odor sources: rheotaxis and eddy chemotaxis.
    Gardiner JM; Atema J
    J Exp Biol; 2007 Jun; 210(Pt 11):1925-34. PubMed ID: 17515418
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Modeling Optimal Strategies for Finding a Resource-Linked, Windborne Odor Plume: Theories, Robotics, and Biomimetic Lessons from Flying Insects.
    Bau J; Cardé RT
    Integr Comp Biol; 2015 Sep; 55(3):461-77. PubMed ID: 25980569
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Walking
    Demir M; Kadakia N; Anderson HD; Clark DA; Emonet T
    Elife; 2020 Nov; 9():. PubMed ID: 33140723
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Odor Plumes and Animal Navigation in Turbulent Water Flow: A Field Study.
    Zimmer-Faust RK; Finelli CM; Pentcheff ND; Wethey DS
    Biol Bull; 1995 Apr; 188(2):111-116. PubMed ID: 29281358
    [TBL] [Abstract][Full Text] [Related]  

  • 6. One rhinophore probably provides sufficient sensory input for odour-based navigation by the nudibranch mollusc Tritonia diomedea.
    McCullagh GB; Bishop CD; Wyeth RC
    J Exp Biol; 2014 Dec; 217(Pt 23):4149-58. PubMed ID: 25324338
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Moth-inspired navigation algorithm in a turbulent odor plume from a pulsating source.
    Liberzon A; Harrington K; Daniel N; Gurka R; Harari A; Zilman G
    PLoS One; 2018; 13(6):e0198422. PubMed ID: 29897978
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Navigation Along Windborne Plumes of Pheromone and Resource-Linked Odors.
    Cardé RT
    Annu Rev Entomol; 2021 Jan; 66():317-336. PubMed ID: 32926790
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Behavioral observations and computer simulations of blue crab movement to a chemical source in a controlled turbulent flow.
    Weissburg MJ; Dusenbery DB
    J Exp Biol; 2002 Nov; 205(Pt 21):3387-98. PubMed ID: 12324548
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Should animals navigating over short distances switch to a magnetic compass sense?
    Wyeth RC
    Front Behav Neurosci; 2010; 4():. PubMed ID: 20740070
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Sensing complementary temporal features of odor signals enhances navigation of diverse turbulent plumes.
    Jayaram V; Kadakia N; Emonet T
    Elife; 2022 Jan; 11():. PubMed ID: 35072625
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Using Head-Mounted Ethanol Sensors to Monitor Olfactory Information and Determine Behavioral Changes Associated with Ethanol-Plume Contact during Mouse Odor-Guided Navigation.
    Tariq MF; Lewis SM; Lowell A; Moore S; Miles JT; Perkel DJ; Gire DH
    eNeuro; 2021; 8(1):. PubMed ID: 33419862
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Odors: from chemical structures to gaseous plumes.
    Young BD; Escalon JA; Mathew D
    Neurosci Biobehav Rev; 2020 Apr; 111():19-29. PubMed ID: 31931034
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Behavioral discrimination and olfactory bulb encoding of odor plume intermittency.
    Gumaste A; Baker KL; Izydorczak M; True AC; Vasan G; Crimaldi JP; Verhagen J
    Elife; 2024 Mar; 13():. PubMed ID: 38441541
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Odor tracking in aquatic organisms: the importance of temporal and spatial intermittency of the turbulent plume.
    Michaelis BT; Leathers KW; Bobkov YV; Ache BW; Principe JC; Baharloo R; Park IM; Reidenbach MA
    Sci Rep; 2020 May; 10(1):7961. PubMed ID: 32409665
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Olfactory Navigation and the Receptor Nonlinearity.
    Victor JD; Boie SD; Connor EG; Crimaldi JP; Ermentrout GB; Nagel KI
    J Neurosci; 2019 May; 39(19):3713-3727. PubMed ID: 30846614
    [TBL] [Abstract][Full Text] [Related]  

  • 17. A Comparison between Mouse,
    Gumaste A; Coronas-Samano G; Hengenius J; Axman R; Connor EG; Baker KL; Ermentrout B; Crimaldi JP; Verhagen JV
    eNeuro; 2020; 7(1):. PubMed ID: 31924732
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Navigational strategies used by insects to find distant, wind-borne sources of odor.
    Cardé RT; Willis MA
    J Chem Ecol; 2008 Jul; 34(7):854-66. PubMed ID: 18581182
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Olfactory navigation in aquatic gastropods.
    Wyeth RC
    J Exp Biol; 2019 Feb; 222(Pt Suppl 1):. PubMed ID: 30728227
    [TBL] [Abstract][Full Text] [Related]  

  • 20.
    ; ; . PubMed ID:
    [No Abstract]   [Full Text] [Related]  

    [Next]    [New Search]
    of 9.