These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
216 related articles for article (PubMed ID: 26116212)
1. Auxotrophic Mutations Reduce Tolerance of Saccharomyces cerevisiae to Very High Levels of Ethanol Stress. Swinnen S; Goovaerts A; Schaerlaekens K; Dumortier F; Verdyck P; Souvereyns K; Van Zeebroeck G; Foulquié-Moreno MR; Thevelein JM Eukaryot Cell; 2015 Sep; 14(9):884-97. PubMed ID: 26116212 [TBL] [Abstract][Full Text] [Related]
2. Acetic acid inhibits nutrient uptake in Saccharomyces cerevisiae: auxotrophy confounds the use of yeast deletion libraries for strain improvement. Ding J; Bierma J; Smith MR; Poliner E; Wolfe C; Hadduck AN; Zara S; Jirikovic M; van Zee K; Penner MH; Patton-Vogt J; Bakalinsky AT Appl Microbiol Biotechnol; 2013 Aug; 97(16):7405-16. PubMed ID: 23828602 [TBL] [Abstract][Full Text] [Related]
3. Identification of novel causative genes determining the complex trait of high ethanol tolerance in yeast using pooled-segregant whole-genome sequence analysis. Swinnen S; Schaerlaekens K; Pais T; Claesen J; Hubmann G; Yang Y; Demeke M; Foulquié-Moreno MR; Goovaerts A; Souvereyns K; Clement L; Dumortier F; Thevelein JM Genome Res; 2012 May; 22(5):975-84. PubMed ID: 22399573 [TBL] [Abstract][Full Text] [Related]
4. Trehalose promotes the survival of Saccharomyces cerevisiae during lethal ethanol stress, but does not influence growth under sublethal ethanol stress. Bandara A; Fraser S; Chambers PJ; Stanley GA FEMS Yeast Res; 2009 Dec; 9(8):1208-16. PubMed ID: 19799639 [TBL] [Abstract][Full Text] [Related]
5. Mind your marker: the effect of common auxotrophic markers on complex traits in yeast. Kaplan K; Levkovich SA; DeRowe Y; Gazit E; Laor Bar-Yosef D FEBS J; 2024 May; 291(10):2209-2220. PubMed ID: 38383986 [TBL] [Abstract][Full Text] [Related]
6. A novel role for protein kinase Gcn2 in yeast tolerance to intracellular acid stress. Hueso G; Aparicio-Sanchis R; Montesinos C; Lorenz S; Murguía JR; Serrano R Biochem J; 2012 Jan; 441(1):255-64. PubMed ID: 21919885 [TBL] [Abstract][Full Text] [Related]
7. [Breeding of robust industrial ethanol-tolerant Saccharomyces cerevisiae strain by artificial zinc finger protein library]. Ma C; Zhao X; Li Q; Zhang M; Kim JS; Bai F Sheng Wu Gong Cheng Xue Bao; 2013 May; 29(5):612-9. PubMed ID: 24010359 [TBL] [Abstract][Full Text] [Related]
8. [Comparison of three approaches to breed industrial Saccharomyces cerevisiae strains with improved ethanol tolerance]. Li Q; Zhao X; Kim JS; Bai F Sheng Wu Gong Cheng Xue Bao; 2013 Nov; 29(11):1672-5. PubMed ID: 24701832 [TBL] [Abstract][Full Text] [Related]
9. Construction of Saccharomyces cerevisiae strains with enhanced ethanol tolerance by mutagenesis of the TATA-binding protein gene and identification of novel genes associated with ethanol tolerance. Yang J; Bae JY; Lee YM; Kwon H; Moon HY; Kang HA; Yee SB; Kim W; Choi W Biotechnol Bioeng; 2011 Aug; 108(8):1776-87. PubMed ID: 21437883 [TBL] [Abstract][Full Text] [Related]
10. Natural Variation in Sirr A; Scott AC; Cromie GA; Ludlow CL; Ahyong V; Morgan TS; Gilbert T; Dudley AM G3 (Bethesda); 2018 Jan; 8(1):239-251. PubMed ID: 29138237 [TBL] [Abstract][Full Text] [Related]
11. Stress Tolerance Variations in Saccharomyces cerevisiae Strains from Diverse Ecological Sources and Geographical Locations. Zheng YL; Wang SA PLoS One; 2015; 10(8):e0133889. PubMed ID: 26244846 [TBL] [Abstract][Full Text] [Related]
13. Identification of RCN1 and RSA3 as ethanol-tolerant genes in Saccharomyces cerevisiae using a high copy barcoded library. Anderson MJ; Barker SL; Boone C; Measday V FEMS Yeast Res; 2012 Feb; 12(1):48-60. PubMed ID: 22093065 [TBL] [Abstract][Full Text] [Related]
14. [Improving ethanol tolerance of Saccharomyces cerevisiae industrial strain by directed evolution of SPT3]. Zhao X; Jiang R; Li N; Yang Q; Bai F Sheng Wu Gong Cheng Xue Bao; 2010 Feb; 26(2):159-64. PubMed ID: 20432932 [TBL] [Abstract][Full Text] [Related]
15. Phenotypic evaluation of natural and industrial Saccharomyces yeasts for different traits desirable in industrial bioethanol production. Mukherjee V; Steensels J; Lievens B; Van de Voorde I; Verplaetse A; Aerts G; Willems KA; Thevelein JM; Verstrepen KJ; Ruyters S Appl Microbiol Biotechnol; 2014 Nov; 98(22):9483-98. PubMed ID: 25267160 [TBL] [Abstract][Full Text] [Related]
16. Mutations of the TATA-binding protein confer enhanced tolerance to hyperosmotic stress in Saccharomyces cerevisiae. Kim NR; Yang J; Kwon H; An J; Choi W; Kim W Appl Microbiol Biotechnol; 2013 Sep; 97(18):8227-38. PubMed ID: 23709042 [TBL] [Abstract][Full Text] [Related]
17. Genetic Basis of Variation in Heat and Ethanol Tolerance in Riles L; Fay JC G3 (Bethesda); 2019 Jan; 9(1):179-188. PubMed ID: 30459179 [No Abstract] [Full Text] [Related]
18. Construction of a quadruple auxotrophic mutant of an industrial polyploid saccharomyces cerevisiae strain by using RNA-guided Cas9 nuclease. Zhang GC; Kong II; Kim H; Liu JJ; Cate JH; Jin YS Appl Environ Microbiol; 2014 Dec; 80(24):7694-701. PubMed ID: 25281382 [TBL] [Abstract][Full Text] [Related]
19. Identification of target genes conferring ethanol stress tolerance to Saccharomyces cerevisiae based on DNA microarray data analysis. Hirasawa T; Yoshikawa K; Nakakura Y; Nagahisa K; Furusawa C; Katakura Y; Shimizu H; Shioya S J Biotechnol; 2007 Aug; 131(1):34-44. PubMed ID: 17604866 [TBL] [Abstract][Full Text] [Related]
20. Independent Mechanisms for Acquired Salt Tolerance versus Growth Resumption Induced by Mild Ethanol Pretreatment in McDaniel EA; Stuecker TN; Veluvolu M; Gasch AP; Lewis JA mSphere; 2018 Nov; 3(6):. PubMed ID: 30487155 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]