These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
216 related articles for article (PubMed ID: 26116212)
21. Involvement of ergosterol in tolerance to vanillin, a potential inhibitor of bioethanol fermentation, in Saccharomyces cerevisiae. Endo A; Nakamura T; Shima J FEMS Microbiol Lett; 2009 Oct; 299(1):95-9. PubMed ID: 19686341 [TBL] [Abstract][Full Text] [Related]
22. A new simple method for isolating multistress-tolerant semidominant mutants of Saccharomyces cerevisiae by one-step selection under lethal hydrogen peroxide stress condition. Nakagawa Y; Seita J; Komiyama S; Yamamura H; Hayakawa M; Iimura Y Biosci Biotechnol Biochem; 2013; 77(2):224-8. PubMed ID: 23391901 [TBL] [Abstract][Full Text] [Related]
23. Changes and roles of membrane compositions in the adaptation of Saccharomyces cerevisiae to ethanol. Wang Y; Zhang S; Liu H; Zhang L; Yi C; Li H J Basic Microbiol; 2015 Dec; 55(12):1417-26. PubMed ID: 26265555 [TBL] [Abstract][Full Text] [Related]
24. Increased ethanol production from glycerol by Saccharomyces cerevisiae strains with enhanced stress tolerance from the overexpression of SAGA complex components. Yu KO; Jung J; Ramzi AB; Choe SH; Kim SW; Park C; Han SO Enzyme Microb Technol; 2012 Sep; 51(4):237-43. PubMed ID: 22883559 [TBL] [Abstract][Full Text] [Related]
25. Effect of overexpression of transcription factors on the fermentation properties of Saccharomyces cerevisiae industrial strains. Hou L; Cao X; Wang C; Lu M Lett Appl Microbiol; 2009 Jul; 49(1):14-9. PubMed ID: 19413773 [TBL] [Abstract][Full Text] [Related]
26. Analysis of adaptation to high ethanol concentration in Saccharomyces cerevisiae using DNA microarray. Dinh TN; Nagahisa K; Yoshikawa K; Hirasawa T; Furusawa C; Shimizu H Bioprocess Biosyst Eng; 2009 Aug; 32(5):681-8. PubMed ID: 19125301 [TBL] [Abstract][Full Text] [Related]
27. Response of Saccharomyces cerevisiae to ethanol stress involves actions of protein Asr1p. Ding J; Huang X; Zhao N; Gao F; Lu Q; Zhang KQ J Microbiol Biotechnol; 2010 Dec; 20(12):1630-6. PubMed ID: 21193817 [TBL] [Abstract][Full Text] [Related]
28. Metabolic control of antifungal drug resistance. Robbins N; Collins C; Morhayim J; Cowen LE Fungal Genet Biol; 2010 Feb; 47(2):81-93. PubMed ID: 19595784 [TBL] [Abstract][Full Text] [Related]
29. [Construction of high sulphite-producing industrial strain of Saccharomyces cerevisiae]. Qu N; He XP; Guo XN; Liu N; Zhang BR Wei Sheng Wu Xue Bao; 2006 Feb; 46(1):38-42. PubMed ID: 16579462 [TBL] [Abstract][Full Text] [Related]
30. Protective Effects of Arginine on Saccharomyces cerevisiae Against Ethanol Stress. Cheng Y; Du Z; Zhu H; Guo X; He X Sci Rep; 2016 Aug; 6():31311. PubMed ID: 27507154 [TBL] [Abstract][Full Text] [Related]
31. Auxotrophs compromise cell growth and fatty acid production in Saccharomyces cerevisiae. Yan C; Gao N; Cao X; Yao L; Zhou YJ; Gao J Biotechnol J; 2023 Apr; 18(4):e2200510. PubMed ID: 36689702 [TBL] [Abstract][Full Text] [Related]
32. Stress tolerance and growth physiology of yeast strains from the Brazilian fuel ethanol industry. Della-Bianca BE; Gombert AK Antonie Van Leeuwenhoek; 2013 Dec; 104(6):1083-95. PubMed ID: 24062068 [TBL] [Abstract][Full Text] [Related]
33. Effect of auxotrophies on yeast performance in aerated fed-batch reactor. Landi C; Paciello L; de Alteriis E; Brambilla L; Parascandola P Biochem Biophys Res Commun; 2011 Oct; 414(3):604-11. PubMed ID: 21986533 [TBL] [Abstract][Full Text] [Related]
34. RNA-seq transcriptomic analysis of green tea polyphenols regulation of differently expressed genes in Saccharomyces cerevisiae under ethanol stress. Cheng L; Zhang X; Zheng X; Wu Z; Weng P World J Microbiol Biotechnol; 2019 Mar; 35(4):59. PubMed ID: 30915597 [TBL] [Abstract][Full Text] [Related]
35. Overexpression of PDE2 or SSD1-V in Saccharomyces cerevisiae W303-1A strain renders it ethanol-tolerant. Avrahami-Moyal L; Braun S; Engelberg D FEMS Yeast Res; 2012 Jun; 12(4):447-55. PubMed ID: 22380741 [TBL] [Abstract][Full Text] [Related]
36. Acquired Resistance to Severe Ethanol Stress in Saccharomyces cerevisiae Protein Quality Control. Yoshida M; Kato S; Fukuda S; Izawa S Appl Environ Microbiol; 2021 Feb; 87(6):. PubMed ID: 33361368 [TBL] [Abstract][Full Text] [Related]
37. Increase of ethanol tolerance of Saccharomyces cerevisiae by error-prone whole genome amplification. Luhe AL; Tan L; Wu J; Zhao H Biotechnol Lett; 2011 May; 33(5):1007-11. PubMed ID: 21246255 [TBL] [Abstract][Full Text] [Related]
38. The genetic basis of variation in clean lineages of Saccharomyces cerevisiae in response to stresses encountered during bioethanol fermentations. Greetham D; Wimalasena TT; Leung K; Marvin ME; Chandelia Y; Hart AJ; Phister TG; Tucker GA; Louis EJ; Smart KA PLoS One; 2014; 9(8):e103233. PubMed ID: 25116161 [TBL] [Abstract][Full Text] [Related]
39. Tolerance to acetic acid is improved by mutations of the TATA-binding protein gene. An J; Kwon H; Kim E; Lee YM; Ko HJ; Park H; Choi IG; Kim S; Kim KH; Kim W; Choi W Environ Microbiol; 2015 Mar; 17(3):656-69. PubMed ID: 24761971 [TBL] [Abstract][Full Text] [Related]
40. [Construction and stress tolerance of trehalase mutant in Saccharomyces cerevisiae]. Lv Y; Xiao D; He D; Guo X Wei Sheng Wu Xue Bao; 2008 Oct; 48(10):1301-7. PubMed ID: 19160808 [TBL] [Abstract][Full Text] [Related] [Previous] [Next] [New Search]