These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
205 related articles for article (PubMed ID: 26116681)
1. Use of the mCherry Fluorescent Protein To Study Intestinal Colonization by Enterococcus mundtii ST4SA and Lactobacillus plantarum 423 in Mice. van Zyl WF; Deane SM; Dicks LM Appl Environ Microbiol; 2015 Sep; 81(17):5993-6002. PubMed ID: 26116681 [TBL] [Abstract][Full Text] [Related]
2. In vivo bioluminescence imaging of the spatial and temporal colonization of lactobacillus plantarum 423 and enterococcus mundtii ST4SA in the intestinal tract of mice. Van Zyl WF; Deane SM; Dicks LMT BMC Microbiol; 2018 Oct; 18(1):171. PubMed ID: 30376820 [TBL] [Abstract][Full Text] [Related]
3. Bacteriocin production and adhesion properties as mechanisms for the anti-listerial activity of van Zyl WF; Deane SM; Dicks LMT Benef Microbes; 2019 Apr; 10(3):329-349. PubMed ID: 30773929 [TBL] [Abstract][Full Text] [Related]
4. Enterococcus mundtii ST4SA and Lactobacillus plantarum 423 excludes Listeria monocytogenes from the GIT, as shown by bioluminescent studies in mice. van Zyl WF; Deane SM; Dicks LM Benef Microbes; 2016; 7(2):227-35. PubMed ID: 26689230 [TBL] [Abstract][Full Text] [Related]
5. Enterococcus mundtii ST4SA and Lactobacillus plantarum 423 alleviated symptoms of Salmonella infection, as determined in Wistar rats challenged with Salmonella enterica serovar Typhimurium. Dicks LM; ten Doeschate K Curr Microbiol; 2010 Sep; 61(3):184-9. PubMed ID: 20127245 [TBL] [Abstract][Full Text] [Related]
6. Development of a novel selection/counter-selection system for chromosomal gene integrations and deletions in lactic acid bacteria. Van Zyl WF; Dicks LMT; Deane SM BMC Mol Biol; 2019 Mar; 20(1):10. PubMed ID: 30922229 [TBL] [Abstract][Full Text] [Related]
7. Adhesion of the probiotic strains Enterococcus mundtii ST4SA and Lactobacillus plantarum 423 to Caco-2 cells under conditions simulating the intestinal tract, and in the presence of antibiotics and anti-inflammatory medicaments. Botes M; Loos B; van Reenen CA; Dicks LM Arch Microbiol; 2008 Nov; 190(5):573-84. PubMed ID: 18641972 [TBL] [Abstract][Full Text] [Related]
8. Safety Assessment of Lactobacillus plantarum 423 and Enterococcus mundtii ST4SA Determined in Trials with Wistar Rats. Ramiah K; Ten Doeschate K; Smith R; Dicks LM Probiotics Antimicrob Proteins; 2009 Jun; 1(1):15-23. PubMed ID: 26783128 [TBL] [Abstract][Full Text] [Related]
9. Evaluation of Enterococcus mundtii ST4SA and Lactobacillus plantarum 423 as probiotics by using a gastro-intestinal model with infant milk formulations as substrate. Botes M; van Reenen CA; Dicks LM Int J Food Microbiol; 2008 Dec; 128(2):362-70. PubMed ID: 18963159 [TBL] [Abstract][Full Text] [Related]
10. Tracing Lactobacillus plantarum within the intestinal tract of mice: green fluorescent protein-based fluorescent tagging. Cui S; Chen C; Gu J; Mao B; Zhang H; Zhao J; Chen W J Sci Food Agric; 2021 Mar; 101(5):1758-1766. PubMed ID: 32892354 [TBL] [Abstract][Full Text] [Related]
11. [Construction and application of mCherry red fluorescent protein fusion expression system in lactic acid bacteria]. Chen Y; Wang P; Zhang W; Yang Q; Yang Y Sheng Wu Gong Cheng Xue Bao; 2019 Mar; 35(3):492-504. PubMed ID: 30912357 [TBL] [Abstract][Full Text] [Related]
12. Survival and adherence of antimicrobial peptide ST4SA, produced by Enterococcus mundtii, at conditions found in the human gastro-intestinal tract. Dicks LM; Granger M; van Reenen CA J Basic Microbiol; 2010 Dec; 50 Suppl 1():S25-9. PubMed ID: 20967791 [TBL] [Abstract][Full Text] [Related]
13. Antioxidative effects in vivo and colonization of Lactobacillus plantarum MA2 in the murine intestinal tract. Tang W; Xing Z; Hu W; Li C; Wang J; Wang Y Appl Microbiol Biotechnol; 2016 Aug; 100(16):7193-202. PubMed ID: 27178180 [TBL] [Abstract][Full Text] [Related]
14. Lactobacillus plantarum DSM 2648 is a potential probiotic that enhances intestinal barrier function. Anderson RC; Cookson AL; McNabb WC; Kelly WJ; Roy NC FEMS Microbiol Lett; 2010 Aug; 309(2):184-92. PubMed ID: 20618863 [TBL] [Abstract][Full Text] [Related]
15. Effects of the probiotic Enterococcus faecium NCIMB 10415 on selected lactic acid bacteria and enterobacteria in co-culture. Starke IC; Zentek J; Vahjen W Benef Microbes; 2015; 6(3):345-52. PubMed ID: 25519527 [TBL] [Abstract][Full Text] [Related]
16. Inoculated fermentation of green olives with potential probiotic Lactobacillus pentosus and Lactobacillus plantarum starter cultures isolated from industrially fermented olives. Blana VA; Grounta A; Tassou CC; Nychas GJ; Panagou EZ Food Microbiol; 2014 Apr; 38():208-18. PubMed ID: 24290645 [TBL] [Abstract][Full Text] [Related]
17. Diet alters probiotic Lactobacillus persistence and function in the intestine. Tachon S; Lee B; Marco ML Environ Microbiol; 2014 Sep; 16(9):2915-26. PubMed ID: 24118739 [TBL] [Abstract][Full Text] [Related]
18. Effect of gastro-intestinal conditions on the growth of Enterococcus mundtii ST4SA, and production of bacteriocin ST4SA recorded by real-time PCR. Granger M; van Reenen CA; Dicks LM Int J Food Microbiol; 2008 Apr; 123(3):277-80. PubMed ID: 18234384 [TBL] [Abstract][Full Text] [Related]
20. Probiotic potency of Lactobacillus plantarum KX519413 and KX519414 isolated from honey bee gut. C HC; T R K FEMS Microbiol Lett; 2018 Feb; 365(4):. PubMed ID: 29319821 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]