BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

202 related articles for article (PubMed ID: 26116739)

  • 1. Analysis of lipid-composition changes in plasma membrane microdomains.
    Ogiso H; Taniguchi M; Okazaki T
    J Lipid Res; 2015 Aug; 56(8):1594-605. PubMed ID: 26116739
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Lipid composition of membrane rafts, isolated with and without detergent, from the spleen of a mouse model of Gaucher disease.
    Hattersley KJ; Hein LK; Fuller M
    Biochem Biophys Res Commun; 2013 Dec; 442(1-2):62-7. PubMed ID: 24220330
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Inhibition of sphingomyelin synthase (SMS) affects intracellular sphingomyelin accumulation and plasma membrane lipid organization.
    Li Z; Hailemariam TK; Zhou H; Li Y; Duckworth DC; Peake DA; Zhang Y; Kuo MS; Cao G; Jiang XC
    Biochim Biophys Acta; 2007 Sep; 1771(9):1186-94. PubMed ID: 17616479
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Lipid composition of membrane microdomains isolated detergent-free from PUFA supplemented RAW264.7 macrophages.
    Hellwing C; Tigistu-Sahle F; Fuhrmann H; Käkelä R; Schumann J
    J Cell Physiol; 2018 Mar; 233(3):2602-2612. PubMed ID: 28782808
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Sphingolipids in lipid microdomains and obesity.
    Mitsutake S; Igarashi Y
    Vitam Horm; 2013; 91():271-84. PubMed ID: 23374721
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Resistance to alkyl-lysophospholipid-induced apoptosis due to downregulated sphingomyelin synthase 1 expression with consequent sphingomyelin- and cholesterol-deficiency in lipid rafts.
    Van der Luit AH; Budde M; Zerp S; Caan W; Klarenbeek JB; Verheij M; Van Blitterswijk WJ
    Biochem J; 2007 Jan; 401(2):541-9. PubMed ID: 17049047
    [TBL] [Abstract][Full Text] [Related]  

  • 7. A novel mechanism of thrombocytopenia by PS exposure through TMEM16F in sphingomyelin synthase 1 deficiency.
    Fujii Y; Taniguchi M; Nagaya S; Ueda Y; Hashizume C; Watanabe K; Takeya H; Kosaka T; Okazaki T
    Blood Adv; 2021 Oct; 5(20):4265-4277. PubMed ID: 34478523
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Clot retraction is mediated by factor XIII-dependent fibrin-αIIbβ3-myosin axis in platelet sphingomyelin-rich membrane rafts.
    Kasahara K; Kaneda M; Miki T; Iida K; Sekino-Suzuki N; Kawashima I; Suzuki H; Shimonaka M; Arai M; Ohno-Iwashita Y; Kojima S; Abe M; Kobayashi T; Okazaki T; Souri M; Ichinose A; Yamamoto N
    Blood; 2013 Nov; 122(19):3340-8. PubMed ID: 24002447
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Plasma membrane sphingomyelin modulates thymocyte development by inhibiting TCR-induced apoptosis.
    Toshima K; Nagafuku M; Okazaki T; Kobayashi T; Inokuchi JI
    Int Immunol; 2019 Mar; 31(4):211-223. PubMed ID: 30561621
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Sphingomyelinase induces lipid microdomain formation in a fluid phosphatidylcholine/sphingomyelin membrane.
    Holopainen JM; Subramanian M; Kinnunen PK
    Biochemistry; 1998 Dec; 37(50):17562-70. PubMed ID: 9860872
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Impaired TCR signaling through dysfunction of lipid rafts in sphingomyelin synthase 1 (SMS1)-knockdown T cells.
    Jin ZX; Huang CR; Dong L; Goda S; Kawanami T; Sawaki T; Sakai T; Tong XP; Masaki Y; Fukushima T; Tanaka M; Mimori T; Tojo H; Bloom ET; Okazaki T; Umehara H
    Int Immunol; 2008 Nov; 20(11):1427-37. PubMed ID: 18820264
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Role of membrane sphingomyelin and ceramide in platform formation for Fas-mediated apoptosis.
    Miyaji M; Jin ZX; Yamaoka S; Amakawa R; Fukuhara S; Sato SB; Kobayashi T; Domae N; Mimori T; Bloom ET; Okazaki T; Umehara H
    J Exp Med; 2005 Jul; 202(2):249-59. PubMed ID: 16009715
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Differential regulation of ceramide in lipid-rich microdomains (rafts): antagonistic role of palmitoyl:protein thioesterase and neutral sphingomyelinase 2.
    Goswami R; Ahmed M; Kilkus J; Han T; Dawson SA; Dawson G
    J Neurosci Res; 2005 Jul; 81(2):208-17. PubMed ID: 15929065
    [TBL] [Abstract][Full Text] [Related]  

  • 14. uPA binding increases UPAR localization to lipid rafts and modifies the receptor microdomain composition.
    Sahores M; Prinetti A; Chiabrando G; Blasi F; Sonnino S
    Biochim Biophys Acta; 2008 Jan; 1778(1):250-9. PubMed ID: 17963689
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Colocalization of receptors for Shiga toxins with lipid rafts in primary human renal glomerular endothelial cells and influence of D-PDMP on synthesis and distribution of glycosphingolipid receptors.
    Legros N; Pohlentz G; Runde J; Dusny S; Humpf HU; Karch H; Müthing J
    Glycobiology; 2017 Oct; 27(10):947-965. PubMed ID: 28535204
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Distribution of C16:0, C18:0, C24:1, and C24:0 sulfatides in central nervous system lipid rafts by quantitative ultra-high-pressure liquid chromatography tandem mass spectrometry.
    Moyano AL; Li G; Lopez-Rosas A; Månsson JE; van Breemen RB; Givogri MI
    Anal Biochem; 2014 Dec; 467():31-9. PubMed ID: 25205652
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Comparative lipidomics and proteomics analysis of platelet lipid rafts using different detergents.
    Rabani V; Davani S; Gambert-Nicot S; Meneveau N; Montange D
    Platelets; 2016 Nov; 27(7):634-641. PubMed ID: 27184886
    [TBL] [Abstract][Full Text] [Related]  

  • 18. oxLDL and eLDL Induced Membrane Microdomains in Human Macrophages.
    Wallner S; Grandl M; Liebisch G; Peer M; Orsó E; Sigrüner A; Sobota A; Schmitz G
    PLoS One; 2016; 11(11):e0166798. PubMed ID: 27870891
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Ceramide regulation of the tumor suppressor phosphatase PTEN in rafts isolated from neurotumor cell lines.
    Goswami R; Singh D; Phillips G; Kilkus J; Dawson G
    J Neurosci Res; 2005 Aug; 81(4):541-50. PubMed ID: 15968641
    [TBL] [Abstract][Full Text] [Related]  

  • 20. ABC-transporters are localized in caveolin-1-positive and reggie-1-negative and reggie-2-negative microdomains of the canalicular membrane in rat hepatocytes.
    Ismair MG; Häusler S; Stuermer CA; Guyot C; Meier PJ; Roth J; Stieger B
    Hepatology; 2009 May; 49(5):1673-82. PubMed ID: 19197976
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 11.