BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

202 related articles for article (PubMed ID: 26116739)

  • 41. Analysis of Fatty Acid and Cholesterol Content from Detergent-Resistant and Detergent-Free Membrane Microdomains.
    McClellan ME; Elliott MH
    Methods Mol Biol; 2017; 1609():185-194. PubMed ID: 28660583
    [TBL] [Abstract][Full Text] [Related]  

  • 42. Membrane microdomains, caveolae, and caveolar endocytosis of sphingolipids.
    Cheng ZJ; Singh RD; Marks DL; Pagano RE
    Mol Membr Biol; 2006; 23(1):101-10. PubMed ID: 16611585
    [TBL] [Abstract][Full Text] [Related]  

  • 43. Association of excitatory amino acid transporters, especially EAAT2, with cholesterol-rich lipid raft microdomains: importance for excitatory amino acid transporter localization and function.
    Butchbach ME; Tian G; Guo H; Lin CL
    J Biol Chem; 2004 Aug; 279(33):34388-96. PubMed ID: 15187084
    [TBL] [Abstract][Full Text] [Related]  

  • 44. G-protein-coupled receptor-signaling components in membrane raft and caveolae microdomains.
    Patel HH; Murray F; Insel PA
    Handb Exp Pharmacol; 2008; (186):167-84. PubMed ID: 18491052
    [TBL] [Abstract][Full Text] [Related]  

  • 45. Biosynthesis of the anti-lipid-microdomain sphingoid base 4,14-sphingadiene by the ceramide desaturase FADS3.
    Jojima K; Edagawa M; Sawai M; Ohno Y; Kihara A
    FASEB J; 2020 Feb; 34(2):3318-3335. PubMed ID: 31916624
    [TBL] [Abstract][Full Text] [Related]  

  • 46. GLUT1 is associated with sphingolipid-organized, cholesterol-independent domains in L929 mouse fibroblast cells.
    Rylaarsdam LE; Johnecheck GN; Looyenga BD; Louters LL
    Biochimie; 2019 Jul; 162():88-96. PubMed ID: 30980844
    [TBL] [Abstract][Full Text] [Related]  

  • 47. R7-binding protein targets the G protein beta 5/R7-regulator of G protein signaling complex to lipid rafts in neuronal cells and brain.
    Nini L; Waheed AA; Panicker LM; Czapiga M; Zhang JH; Simonds WF
    BMC Biochem; 2007 Sep; 8():18. PubMed ID: 17880698
    [TBL] [Abstract][Full Text] [Related]  

  • 48. Ceramide selectively displaces cholesterol from ordered lipid domains (rafts): implications for lipid raft structure and function.
    Megha ; London E
    J Biol Chem; 2004 Mar; 279(11):9997-10004. PubMed ID: 14699154
    [TBL] [Abstract][Full Text] [Related]  

  • 49. Proteomic Profiling of Detergent Resistant Membranes (Lipid Rafts) of Prostasomes.
    Dubois L; Ronquist KK; Ek B; Ronquist G; Larsson A
    Mol Cell Proteomics; 2015 Nov; 14(11):3015-22. PubMed ID: 26272980
    [TBL] [Abstract][Full Text] [Related]  

  • 50. Lipid rafts in higher plant cells: purification and characterization of Triton X-100-insoluble microdomains from tobacco plasma membrane.
    Mongrand S; Morel J; Laroche J; Claverol S; Carde JP; Hartmann MA; Bonneu M; Simon-Plas F; Lessire R; Bessoule JJ
    J Biol Chem; 2004 Aug; 279(35):36277-86. PubMed ID: 15190066
    [TBL] [Abstract][Full Text] [Related]  

  • 51. Nongenomic steroid- and ceramide-induced maturation in amphibian oocytes involves functional caveolae-like microdomains associated with a cytoskeletal environment.
    Buschiazzo J; Alonso TS; Biscoglio M; Antollini SS; Bonini IC
    Biol Reprod; 2011 Oct; 85(4):808-22. PubMed ID: 21653896
    [TBL] [Abstract][Full Text] [Related]  

  • 52. Polyunsaturated fatty acid supplements modulate mast cell membrane microdomain composition.
    Basiouni S; Stöckel K; Fuhrmann H; Schumann J
    Cell Immunol; 2012; 275(1-2):42-6. PubMed ID: 22486927
    [TBL] [Abstract][Full Text] [Related]  

  • 53. Reversible Dissolution of Microdomains in Detergent-Resistant Membranes at Physiological Temperature.
    Cremona A; Orsini F; Corsetto PA; Hoogenboom BW; Rizzo AM
    PLoS One; 2015; 10(7):e0132696. PubMed ID: 26147107
    [TBL] [Abstract][Full Text] [Related]  

  • 54. Contributions of quantitative proteomics to understanding membrane microdomains.
    Zheng YZ; Foster LJ
    J Lipid Res; 2009 Oct; 50(10):1976-85. PubMed ID: 19578161
    [TBL] [Abstract][Full Text] [Related]  

  • 55. Photoactivable sphingosine as a tool to study membrane microenvironments in cultured cells.
    Aureli M; Prioni S; Mauri L; Loberto N; Casellato R; Ciampa MG; Chigorno V; Prinetti A; Sonnino S
    J Lipid Res; 2010 Apr; 51(4):798-808. PubMed ID: 19820263
    [TBL] [Abstract][Full Text] [Related]  

  • 56. Cholesterol interactions with ceramide and sphingomyelin.
    García-Arribas AB; Alonso A; Goñi FM
    Chem Phys Lipids; 2016 Sep; 199():26-34. PubMed ID: 27132117
    [TBL] [Abstract][Full Text] [Related]  

  • 57. Lipidomics reveals membrane lipid remodelling and release of potential lipid mediators during early stress responses in a murine melanoma cell line.
    Balogh G; Péter M; Liebisch G; Horváth I; Török Z; Nagy E; Maslyanko A; Benko S; Schmitz G; Harwood JL; Vígh L
    Biochim Biophys Acta; 2010 Sep; 1801(9):1036-47. PubMed ID: 20430110
    [TBL] [Abstract][Full Text] [Related]  

  • 58. The state of lipid rafts: from model membranes to cells.
    Edidin M
    Annu Rev Biophys Biomol Struct; 2003; 32():257-83. PubMed ID: 12543707
    [TBL] [Abstract][Full Text] [Related]  

  • 59. Widespread tissue distribution and synthetic pathway of polyunsaturated C24:2 sphingolipids in mammals.
    Edagawa M; Sawai M; Ohno Y; Kihara A
    Biochim Biophys Acta Mol Cell Biol Lipids; 2018 Dec; 1863(12):1441-1448. PubMed ID: 30251650
    [TBL] [Abstract][Full Text] [Related]  

  • 60. Lipid rafts: elusive or illusive?
    Munro S
    Cell; 2003 Nov; 115(4):377-88. PubMed ID: 14622593
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 11.