These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
725 related articles for article (PubMed ID: 26116779)
21. Hydroxyapatite mineralization of chitosan-tragacanth blend/ZnO/Ag nanocomposite films with enhanced antibacterial activity. Mallakpour S; Okhovat M Int J Biol Macromol; 2021 Apr; 175():330-340. PubMed ID: 33556403 [TBL] [Abstract][Full Text] [Related]
22. 3D construct of hydroxyapatite/zinc oxide/palladium nanocomposite scaffold for bone tissue engineering. Heidari F; Tabatabaei FS; Razavi M; Lari RB; Tavangar M; Romanos GE; Vashaee D; Tayebi L J Mater Sci Mater Med; 2020 Sep; 31(10):85. PubMed ID: 33000320 [TBL] [Abstract][Full Text] [Related]
23. [A study on nano-hydroxyapatite-chitosan scaffold for bone tissue engineering]. Wang X; Liu L; Zhang Q Zhongguo Xiu Fu Chong Jian Wai Ke Za Zhi; 2007 Feb; 21(2):120-4. PubMed ID: 17357456 [TBL] [Abstract][Full Text] [Related]
24. The role of titanium dioxide on the morphology, microstructure, and bioactivity of grafted cellulose/hydroxyapatite nanocomposites for a potential application in bone repair. Saber-Samandari S; Yekta H; Ahmadi S; Alamara K Int J Biol Macromol; 2018 Jan; 106():481-488. PubMed ID: 28797809 [TBL] [Abstract][Full Text] [Related]
25. Organically modified clay supported chitosan/hydroxyapatite-zinc oxide nanocomposites with enhanced mechanical and biological properties for the application in bone tissue engineering. Bhowmick A; Banerjee SL; Pramanik N; Jana P; Mitra T; Gnanamani A; Das M; Kundu PP Int J Biol Macromol; 2018 Jan; 106():11-19. PubMed ID: 28774805 [TBL] [Abstract][Full Text] [Related]
26. Preparation and characterization of a new sustainable bio-based elastomer nanocomposites containing poly(glycerol sebacate citrate)/chitosan/n-hydroxyapatite for promising tissue engineering applications. Asgharnejad-Laskoukalayeh M; Golbaten-Mofrad H; Jafari SH; Seyfikar S; Yousefi Talouki P; Jafari A; Goodarzi V; Zamanlui S J Biomater Sci Polym Ed; 2022 Dec; 33(18):2385-2405. PubMed ID: 35876727 [TBL] [Abstract][Full Text] [Related]
27. Enhanced water-solubility, antibacterial activity and biocompatibility upon introducing sulfobetaine and quaternary ammonium to chitosan. Chen Y; Li J; Li Q; Shen Y; Ge Z; Zhang W; Chen S Carbohydr Polym; 2016 Jun; 143():246-53. PubMed ID: 27083366 [TBL] [Abstract][Full Text] [Related]
28. A novel chitosan-tussah silk fibroin/nano-hydroxyapatite composite bone scaffold platform with tunable mechanical strength in a wide range. Ran J; Hu J; Sun G; Chen S; Jiang P; Shen X; Tong H Int J Biol Macromol; 2016 Dec; 93(Pt A):87-97. PubMed ID: 27568361 [TBL] [Abstract][Full Text] [Related]
29. Polyurethane nanocomposite impregnated with chitosan-modified graphene oxide as a potential antibacterial wound dressing. Najafabadi SAA; Mohammadi A; Kharazi AZ Mater Sci Eng C Mater Biol Appl; 2020 Oct; 115():110899. PubMed ID: 32600676 [TBL] [Abstract][Full Text] [Related]
30. Facile synthesis, characterization, and antimicrobial activity of cellulose-chitosan-hydroxyapatite composite material: a potential material for bone tissue engineering. Mututuvari TM; Harkins AL; Tran CD J Biomed Mater Res A; 2013 Nov; 101(11):3266-77. PubMed ID: 23595871 [TBL] [Abstract][Full Text] [Related]
31. Synergistic combination of natural bioadhesive bael fruit gum and chitosan/nano-hydroxyapatite: A ternary bioactive nanohybrid for bone tissue engineering. Mirza S; Zia I; Jolly R; Kazmi S; Owais M; Shakir M Int J Biol Macromol; 2018 Nov; 119():215-224. PubMed ID: 30036627 [TBL] [Abstract][Full Text] [Related]
32. Modified n-HA/PA66 scaffolds with chitosan coating for bone tissue engineering: cell stimulation and drug release. Zou Q; Li J; Niu L; Zuo Y; Li J; Li Y J Biomater Sci Polym Ed; 2017 Sep; 28(13):1271-1285. PubMed ID: 28402219 [TBL] [Abstract][Full Text] [Related]
33. Incorporation of microfibrillated cellulose into collagen-hydroxyapatite scaffold for bone tissue engineering. He X; Fan X; Feng W; Chen Y; Guo T; Wang F; Liu J; Tang K Int J Biol Macromol; 2018 Aug; 115():385-392. PubMed ID: 29673955 [TBL] [Abstract][Full Text] [Related]
34. Mechanical properties of natural chitosan/hydroxyapatite/magnetite nanocomposites for tissue engineering applications. Heidari F; Razavi M; E Bahrololoom M; Bazargan-Lari R; Vashaee D; Kotturi H; Tayebi L Mater Sci Eng C Mater Biol Appl; 2016 Aug; 65():338-44. PubMed ID: 27157760 [TBL] [Abstract][Full Text] [Related]
35. In situ synthesized novel biocompatible titania-chitosan nanocomposites with high surface area and antibacterial activity. Kavitha K; Sutha S; Prabhu M; Rajendran V; Jayakumar T Carbohydr Polym; 2013 Apr; 93(2):731-9. PubMed ID: 23499117 [TBL] [Abstract][Full Text] [Related]
36. Novel hydroxyapatite/chitosan bilayered scaffold for osteochondral tissue-engineering applications: Scaffold design and its performance when seeded with goat bone marrow stromal cells. Oliveira JM; Rodrigues MT; Silva SS; Malafaya PB; Gomes ME; Viegas CA; Dias IR; Azevedo JT; Mano JF; Reis RL Biomaterials; 2006 Dec; 27(36):6123-37. PubMed ID: 16945410 [TBL] [Abstract][Full Text] [Related]
37. Synthesis and characterization of nanocomposite scaffolds based on triblock copolymer of L-lactide, ε-caprolactone and nano-hydroxyapatite for bone tissue engineering. Torabinejad B; Mohammadi-Rovshandeh J; Davachi SM; Zamanian A Mater Sci Eng C Mater Biol Appl; 2014 Sep; 42():199-210. PubMed ID: 25063111 [TBL] [Abstract][Full Text] [Related]
39. Synthesis, characterization, in vitro biocompatibility and antibacterial properties study of nanocomposite materials based on hydroxyapatite-biphasic ZnO micro- and nanoparticles embedded in Alginate matrix. Turlybekuly A; Pogrebnjak AD; Sukhodub LF; Sukhodub LB; Kistaubayeva AS; Savitskaya IS; Shokatayeva DH; Bondar OV; Shaimardanov ZK; Plotnikov SV; Shaimardanova BH; Digel I Mater Sci Eng C Mater Biol Appl; 2019 Nov; 104():109965. PubMed ID: 31499965 [TBL] [Abstract][Full Text] [Related]