These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

226 related articles for article (PubMed ID: 26116929)

  • 1. ISQuest: finding insertion sequences in prokaryotic sequence fragment data.
    Biswas A; Gauthier DT; Ranjan D; Zubair M
    Bioinformatics; 2015 Nov; 31(21):3406-12. PubMed ID: 26116929
    [TBL] [Abstract][Full Text] [Related]  

  • 2. A survey of bacterial insertion sequences using IScan.
    Wagner A; Lewis C; Bichsel M
    Nucleic Acids Res; 2007; 35(16):5284-93. PubMed ID: 17686783
    [TBL] [Abstract][Full Text] [Related]  

  • 3. ISEScan: automated identification of insertion sequence elements in prokaryotic genomes.
    Xie Z; Tang H
    Bioinformatics; 2017 Nov; 33(21):3340-3347. PubMed ID: 29077810
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Improving prokaryotic transposable elements identification using a combination of de novo and profile HMM methods.
    Kamoun C; Payen T; Hua-Van A; Filée J
    BMC Genomics; 2013 Oct; 14():700. PubMed ID: 24118975
    [TBL] [Abstract][Full Text] [Related]  

  • 5. OASIS: an automated program for global investigation of bacterial and archaeal insertion sequences.
    Robinson DG; Lee MC; Marx CJ
    Nucleic Acids Res; 2012 Dec; 40(22):e174. PubMed ID: 22904081
    [TBL] [Abstract][Full Text] [Related]  

  • 6. PRAP: an ab initio software package for automated genome-wide analysis of DNA repeats for prokaryotes.
    Chen GL; Chang YJ; Hsueh CH
    Bioinformatics; 2013 Nov; 29(21):2683-9. PubMed ID: 23958725
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Causes of insertion sequences abundance in prokaryotic genomes.
    Touchon M; Rocha EP
    Mol Biol Evol; 2007 Apr; 24(4):969-81. PubMed ID: 17251179
    [TBL] [Abstract][Full Text] [Related]  

  • 8. ISsaga is an ensemble of web-based methods for high throughput identification and semi-automatic annotation of insertion sequences in prokaryotic genomes.
    Varani AM; Siguier P; Gourbeyre E; Charneau V; Chandler M
    Genome Biol; 2011; 12(3):R30. PubMed ID: 21443786
    [TBL] [Abstract][Full Text] [Related]  

  • 9. digIS: towards detecting distant and putative novel insertion sequence elements in prokaryotic genomes.
    Puterová J; Martínek T
    BMC Bioinformatics; 2021 May; 22(1):258. PubMed ID: 34016050
    [TBL] [Abstract][Full Text] [Related]  

  • 10. GAPPadder: a sensitive approach for closing gaps on draft genomes with short sequence reads.
    Chu C; Li X; Wu Y
    BMC Genomics; 2019 Jun; 20(Suppl 5):426. PubMed ID: 31167639
    [TBL] [Abstract][Full Text] [Related]  

  • 11. panISa: ab initio detection of insertion sequences in bacterial genomes from short read sequence data.
    Treepong P; Guyeux C; Meunier A; Couchoud C; Hocquet D; Valot B
    Bioinformatics; 2018 Nov; 34(22):3795-3800. PubMed ID: 29931098
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Insertion sequence diversity in archaea.
    Filée J; Siguier P; Chandler M
    Microbiol Mol Biol Rev; 2007 Mar; 71(1):121-57. PubMed ID: 17347521
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Complete Genome Sequences of Seven Vibrio anguillarum Strains as Derived from PacBio Sequencing.
    Holm KO; Bækkedal C; Söderberg JJ; Haugen P
    Genome Biol Evol; 2018 Apr; 10(4):1127-1131. PubMed ID: 29635365
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Insertion sequences in prokaryotic genomes.
    Siguier P; Filée J; Chandler M
    Curr Opin Microbiol; 2006 Oct; 9(5):526-31. PubMed ID: 16935554
    [TBL] [Abstract][Full Text] [Related]  

  • 15. A Practical Guide for Comparative Genomics of Mobile Genetic Elements in Prokaryotic Genomes.
    Oliveira Alvarenga D; Moreira LM; Chandler M; Varani AM
    Methods Mol Biol; 2018; 1704():213-242. PubMed ID: 29277867
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Multi-CAR: a tool of contig scaffolding using multiple references.
    Chen KT; Chen CJ; Shen HT; Liu CL; Huang SH; Lu CL
    BMC Bioinformatics; 2016 Dec; 17(Suppl 17):469. PubMed ID: 28155633
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Exploring bacterial insertion sequences with ISfinder: objectives, uses, and future developments.
    Siguier P; Varani A; Perochon J; Chandler M
    Methods Mol Biol; 2012; 859():91-103. PubMed ID: 22367867
    [TBL] [Abstract][Full Text] [Related]  

  • 18. ISMapper: identifying transposase insertion sites in bacterial genomes from short read sequence data.
    Hawkey J; Hamidian M; Wick RR; Edwards DJ; Billman-Jacobe H; Hall RM; Holt KE
    BMC Genomics; 2015 Sep; 16(1):667. PubMed ID: 26336060
    [TBL] [Abstract][Full Text] [Related]  

  • 19. CRISPRdigger: detecting CRISPRs with better direct repeat annotations.
    Ge R; Mai G; Wang P; Zhou M; Luo Y; Cai Y; Zhou F
    Sci Rep; 2016 Sep; 6():32942. PubMed ID: 27596864
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Genome ARTIST_v2-An Autonomous Bioinformatics Tool for Annotation of Natural Transposons in Sequenced Genomes.
    Ecovoiu AA; Bologa AM; Chifiriuc DIM; Ciuca AM; Constantin ND; Ghionoiu IC; Ghita IC; Ratiu AC
    Int J Mol Sci; 2022 Oct; 23(20):. PubMed ID: 36293549
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 12.