These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

120 related articles for article (PubMed ID: 26117074)

  • 21. Effects of overhead work configuration on muscle activity during a simulated drilling task.
    Maciukiewicz JM; Cudlip AC; Chopp-Hurley JN; Dickerson CR
    Appl Ergon; 2016 Mar; 53 Pt A():10-6. PubMed ID: 26674399
    [TBL] [Abstract][Full Text] [Related]  

  • 22. The effect of work pace on workload, motor variability and fatigue during simulated light assembly work.
    Bosch T; Mathiassen SE; Visser B; de Looze MP; van Dieën JH
    Ergonomics; 2011 Feb; 54(2):154-68. PubMed ID: 21294013
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Relationship between perceived exertion and mean power frequency of the EMG signal from the upper trapezius muscle during isometric shoulder elevation.
    Hummel A; Läubli T; Pozzo M; Schenk P; Spillmann S; Klipstein A
    Eur J Appl Physiol; 2005 Oct; 95(4):321-6. PubMed ID: 16096843
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Muscle activity during computer-based office work in relation to self-reported job demands and gender.
    Blangsted AK; Hansen K; Jensen C
    Eur J Appl Physiol; 2003 May; 89(3-4):352-8. PubMed ID: 12736845
    [TBL] [Abstract][Full Text] [Related]  

  • 25. EMG analysis of shoulder muscle fatigue during resisted isometric shoulder elevation.
    Minning S; Eliot CA; Uhl TL; Malone TR
    J Electromyogr Kinesiol; 2007 Apr; 17(2):153-9. PubMed ID: 16545963
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Task variation during simulated, repetitive, low-intensity work--influence on manifestation of shoulder muscle fatigue, perceived discomfort and upper-body postures.
    Luger T; Bosch T; Hoozemans M; de Looze M; Veeger D
    Ergonomics; 2015; 58(11):1851-67. PubMed ID: 26046391
    [TBL] [Abstract][Full Text] [Related]  

  • 27. The impact of work configuration, target angle and hand force direction on upper extremity muscle activity during sub-maximal overhead work.
    Chopp JN; Fischer SL; Dickerson CR
    Ergonomics; 2010 Jan; 53(1):83-91. PubMed ID: 20069484
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Gender differences in fatigability and muscle activity responses to a short-cycle repetitive task.
    Srinivasan D; Sinden KE; Mathiassen SE; Côté JN
    Eur J Appl Physiol; 2016 Dec; 116(11-12):2357-2365. PubMed ID: 27743025
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Adaptations to isolated shoulder fatigue during simulated repetitive work. Part I: Fatigue.
    Tse CT; McDonald AC; Keir PJ
    J Electromyogr Kinesiol; 2016 Aug; 29():34-41. PubMed ID: 26208429
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Scapular kinematic and shoulder muscle activity alterations after serratus anterior muscle fatigue.
    Umehara J; Kusano K; Nakamura M; Morishita K; Nishishita S; Tanaka H; Shimizu I; Ichihashi N
    J Shoulder Elbow Surg; 2018 Jul; 27(7):1205-1213. PubMed ID: 29478944
    [TBL] [Abstract][Full Text] [Related]  

  • 31. The influence of task variation on manifestation of fatigue is ambiguous - a literature review.
    Luger T; Bosch T; Veeger D; de Looze M
    Ergonomics; 2014; 57(2):162-74. PubMed ID: 24552472
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Variability of Time- and Frequency-Domain Surface Electromyographic Measures in Non-Fatigued Shoulder Muscles.
    Alasim HN; Nimbarte AD
    IISE Trans Occup Ergon Hum Factors; 2022; 10(4):201-212. PubMed ID: 36411999
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Muscle fatigue and endurance during repetitive intermittent static efforts: development of prediction models.
    Iridiastadi H; Nussbaum MA
    Ergonomics; 2006 Mar; 49(4):344-60. PubMed ID: 16690564
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Development of fatigue and discomfort in the upper trapezius muscle during light manual work.
    Bosch T; de Looze MP; van Dieën JH
    Ergonomics; 2007 Feb; 50(2):161-77. PubMed ID: 17419152
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Using EMG Amplitude and Frequency to Calculate a Multimuscle Fatigue Score and Evaluate Global Shoulder Fatigue.
    McDonald AC; Mulla DM; Keir PJ
    Hum Factors; 2019 Jun; 61(4):526-536. PubMed ID: 30141978
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Static and dynamic myoelectric measures of shoulder muscle fatigue during intermittent dynamic exertions of low to moderate intensity.
    Nussbaum MA
    Eur J Appl Physiol; 2001 Aug; 85(3-4):299-309. PubMed ID: 11560084
    [TBL] [Abstract][Full Text] [Related]  

  • 37. An electromyography study of muscular endurance during the posterior shoulder endurance test.
    Evans NA; Dressler E; Uhl T
    J Electromyogr Kinesiol; 2018 Aug; 41():132-138. PubMed ID: 29883935
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Central and peripheral fatigue development in the shoulder muscle with obesity during an isometric endurance task.
    Pajoutan M; Ghesmaty Sangachin M; Cavuoto LA
    BMC Musculoskelet Disord; 2017 Jul; 18(1):314. PubMed ID: 28732481
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Effects of physical and mental demands on shoulder muscle fatigue.
    Mehta RK; Agnew MJ
    Work; 2012; 41 Suppl 1():2897-901. PubMed ID: 22317159
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Passive shoulder exoskeleton support partially mitigates fatigue-induced effects in overhead work.
    De Bock S; Ampe T; Rossini M; Tassignon B; Lefeber D; Rodriguez-Guerrero C; Roelands B; Geeroms J; Meeusen R; De Pauw K
    Appl Ergon; 2023 Jan; 106():103903. PubMed ID: 36148702
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 6.