These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

169 related articles for article (PubMed ID: 26117137)

  • 1. Complex mixed-mode oscillatory patterns in a periodically forced excitable Belousov-Zhabotinsky reaction model.
    Español MI; Rotstein HG
    Chaos; 2015 Jun; 25(6):064612. PubMed ID: 26117137
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Bromide control, bifurcation and activation in the Belousov-Zhabotinsky reaction.
    Hastings HM; Sobel SG; Field RJ; Bongiovi D; Burke B; Richford D; Finzel K; Garuthara M
    J Phys Chem A; 2008 May; 112(21):4715-8. PubMed ID: 18459756
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Four-phase patterns in forced oscillatory systems.
    Lin AL; Hagberg A; Ardelea A; Bertram M; Swinney HL; Meron E
    Phys Rev E Stat Phys Plasmas Fluids Relat Interdiscip Topics; 2000 Sep; 62(3 Pt B):3790-8. PubMed ID: 11088896
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Resonance tongues and patterns in periodically forced reaction-diffusion systems.
    Lin AL; Hagberg A; Meron E; Swinney HL
    Phys Rev E Stat Nonlin Soft Matter Phys; 2004 Jun; 69(6 Pt 2):066217. PubMed ID: 15244718
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Front dynamics in an oscillatory bistable Belousov-Zhabotinsky chemical reaction.
    Marts B; Martinez K; Lin AL
    Phys Rev E Stat Nonlin Soft Matter Phys; 2004 Nov; 70(5 Pt 2):056223. PubMed ID: 15600744
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Resonant Behavior in a Periodically Forced Nonisothermal Oregonator.
    García-Selfa D; Muñuzuri AP; Pérez-Mercader J; Simakov DSA
    J Phys Chem A; 2019 Sep; 123(38):8083-8088. PubMed ID: 31441660
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Complex dynamics in the Oregonator model with linear delayed feedback.
    Sriram K; Bernard S
    Chaos; 2008 Jun; 18(2):023126. PubMed ID: 18601493
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Period doubling in a periodically forced Belousov-Zhabotinsky reaction.
    Marts B; Simpson DJ; Hagberg A; Lin AL
    Phys Rev E Stat Nonlin Soft Matter Phys; 2007 Aug; 76(2 Pt 2):026213. PubMed ID: 17930127
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Pattern formation in a reaction-diffusion-advection system with wave instability.
    Berenstein I
    Chaos; 2012 Jun; 22(2):023112. PubMed ID: 22757519
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Spiral breakup induced by an electric current in a Belousov-Zhabotinsky medium.
    Taboada JJ; Munuzuri AP; Perez-Munuzuri V; Gomez-Gesteira M; Perez-Villar V
    Chaos; 1994 Sep; 4(3):519-524. PubMed ID: 12780128
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Estimation of the activation energy in the Belousov-Zhabotinsky reaction by temperature effect on excitable waves.
    Zhang J; Zhou L; Ouyang Q
    J Phys Chem A; 2007 Feb; 111(6):1052-6. PubMed ID: 17249646
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Noise-induced wave nucleations in an excitable chemical reaction.
    Beato V; Sendiña-Nadal I; Gerdes I; Engel H
    Phys Rev E Stat Nonlin Soft Matter Phys; 2005 Mar; 71(3 Pt 2A):035204. PubMed ID: 15903483
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Negative-tension instability of scroll waves and winfree turbulence in the oregonator model.
    Alonso S; Sagués F; Mikhailov AS
    J Phys Chem A; 2006 Nov; 110(43):12063-71. PubMed ID: 17064196
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Tuning the oscillatory dynamics of the Belousov-Zhabotinsky reaction using ruthenium nanoparticle decorated graphene.
    Prasanna Kumar DJ; Verma S; Jasuja K; Dayal P
    Phys Chem Chem Phys; 2019 Feb; 21(6):3164-3173. PubMed ID: 30676592
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Dynamic mechanisms of generation of oscillatory cluster patterns in a globally coupled chemical system.
    Rotstein HG; Wu H
    J Chem Phys; 2012 Sep; 137(10):104908. PubMed ID: 22979891
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Cross-diffusion in the two-variable Oregonator model.
    Berenstein I; Beta C
    Chaos; 2013 Sep; 23(3):033119. PubMed ID: 24089955
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Coherence resonance in a chemical excitable system driven by coloured noise.
    Beato V; Sendiña-Nadal I; Gerdes I; Engel H
    Philos Trans A Math Phys Eng Sci; 2008 Feb; 366(1864):381-95. PubMed ID: 17673411
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Externally controlled anisotropy in pattern-forming reaction-diffusion systems.
    Escala DM; Guiu-Souto J; Muñuzuri AP
    Chaos; 2015 Jun; 25(6):064309. PubMed ID: 26117120
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Temperature dependence of the Oregonator model for the Belousov-Zhabotinsky reaction.
    Pullela SR; Cristancho D; He P; Luo D; Hall KR; Cheng Z
    Phys Chem Chem Phys; 2009 Jun; 11(21):4236-43. PubMed ID: 19458825
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Array-enhanced coherence resonance and phase synchronization in a two-dimensional array of excitable chemical oscillators.
    Okano T; Kitagawa A; Miyakawa K
    Phys Rev E Stat Nonlin Soft Matter Phys; 2007 Oct; 76(4 Pt 2):046201. PubMed ID: 17995076
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.