These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
304 related articles for article (PubMed ID: 26117372)
1. Urban wastewater treatment by seven species of microalgae and an algal bloom: Biomass production, N and P removal kinetics and harvestability. Mennaa FZ; Arbib Z; Perales JA Water Res; 2015 Oct; 83():42-51. PubMed ID: 26117372 [TBL] [Abstract][Full Text] [Related]
2. Urban wastewater photobiotreatment with microalgae in a continuously operated photobioreactor: growth, nutrient removal kinetics and biomass coagulation-flocculation. Mennaa FZ; Arbib Z; Perales JA Environ Technol; 2019 Jan; 40(3):342-355. PubMed ID: 29098948 [TBL] [Abstract][Full Text] [Related]
3. Nitrogen availability influences phosphorus removal in microalgae-based wastewater treatment. Beuckels A; Smolders E; Muylaert K Water Res; 2015 Jun; 77():98-106. PubMed ID: 25863319 [TBL] [Abstract][Full Text] [Related]
4. Performance of a flat panel reactor in the continuous culture of microalgae in urban wastewater: prediction from a batch experiment. Ruiz J; Álvarez-Díaz PD; Arbib Z; Garrido-Pérez C; Barragán J; Perales JA Bioresour Technol; 2013 Jan; 127():456-63. PubMed ID: 23138070 [TBL] [Abstract][Full Text] [Related]
5. Microalgae treatment of food processing wastewater for simultaneous biomass resource recycling and water reuse. Xu H; Liu C; Wang A; Yue B; Lin T; Ding M J Environ Manage; 2024 Oct; 369():122394. PubMed ID: 39241593 [TBL] [Abstract][Full Text] [Related]
6. Capability of different microalgae species for phytoremediation processes: wastewater tertiary treatment, CO2 bio-fixation and low cost biofuels production. Arbib Z; Ruiz J; Álvarez-Díaz P; Garrido-Pérez C; Perales JA Water Res; 2014 Feb; 49():465-74. PubMed ID: 24268718 [TBL] [Abstract][Full Text] [Related]
7. Influence of light presence and biomass concentration on nutrient kinetic removal from urban wastewater by Scenedesmus obliquus. Ruiz J; Arbib Z; Alvarez-Díaz PD; Garrido-Pérez C; Barragán J; Perales JA J Biotechnol; 2014 May; 178():32-7. PubMed ID: 24631723 [TBL] [Abstract][Full Text] [Related]
8. Closing Domestic Nutrient Cycles Using Microalgae. Vasconcelos Fernandes T; Shrestha R; Sui Y; Papini G; Zeeman G; Vet LE; Wijffels RH; Lamers P Environ Sci Technol; 2015 Oct; 49(20):12450-6. PubMed ID: 26389714 [TBL] [Abstract][Full Text] [Related]
9. Photobiotreatment: influence of nitrogen and phosphorus ratio in wastewater on growth kinetics of Scenedesmus obliquus. Arbib Z; Ruiz J; Alvarez-Díaz P; Garrido-Pérez C; Barragan J; Perales JA Int J Phytoremediation; 2013; 15(8):774-88. PubMed ID: 23819274 [TBL] [Abstract][Full Text] [Related]
10. Coupled nutrient removal and biomass production with mixed algal culture: impact of biotic and abiotic factors. Su Y; Mennerich A; Urban B Bioresour Technol; 2012 Aug; 118():469-76. PubMed ID: 22717565 [TBL] [Abstract][Full Text] [Related]
11. Cultivation of four microalgae species in the effluent of anaerobic digester for biodiesel production. Kim GY; Yun YM; Shin HS; Han JI Bioresour Technol; 2017 Jan; 224():738-742. PubMed ID: 27887778 [TBL] [Abstract][Full Text] [Related]
12. Simultaneous nitrogen, phosphorous, and hardness removal from reverse osmosis concentrate by microalgae cultivation. Wang XX; Wu YH; Zhang TY; Xu XQ; Dao GH; Hu HY Water Res; 2016 May; 94():215-224. PubMed ID: 26954575 [TBL] [Abstract][Full Text] [Related]
13. Dissolved organic phosphorus bioremediation from food-waste centrate using microalgae. Sutherland DL; Bramucci A J Environ Manage; 2022 Jul; 313():115018. PubMed ID: 35405545 [TBL] [Abstract][Full Text] [Related]
14. Microalgae population dynamics growth with AnMBR effluent: effect of light and phosphorus concentration. Sanchis-Perucho P; Duran F; Barat R; Pachés M; Aguado D Water Sci Technol; 2018 Jun; 77(11-12):2566-2577. PubMed ID: 29944122 [TBL] [Abstract][Full Text] [Related]
15. Microalgae harvesting by pH adjusted coagulation-flocculation, recycling of the coagulant and the growth media. Das P; Thaher MI; Abdul Hakim MA; Al-Jabri HM; Alghasal GS Bioresour Technol; 2016 Sep; 216():824-9. PubMed ID: 27318160 [TBL] [Abstract][Full Text] [Related]
16. Influence of microalgal N and P composition on wastewater nutrient remediation. Whitton R; Le Mével A; Pidou M; Ometto F; Villa R; Jefferson B Water Res; 2016 Mar; 91():371-8. PubMed ID: 26854403 [TBL] [Abstract][Full Text] [Related]
17. Water quality restoration by harvesting mixed culture microalgae using Moringa oleifera. Singh G; Patidar SK Water Environ Res; 2020 Sep; 92(9):1268-1282. PubMed ID: 32160371 [TBL] [Abstract][Full Text] [Related]
18. Removal of biogenic compounds from the post-fermentation effluent in a culture of Chlorella vulgaris. Szwarc K; Szwarc D; Zieliński M Environ Sci Pollut Res Int; 2020 Jan; 27(1):111-117. PubMed ID: 31037532 [TBL] [Abstract][Full Text] [Related]
19. Outdoor phycoremediation and biomass harvesting optimization of microalgae Gani P; Apandi NM; Mohamed Sunar N; Matias-Peralta HM; Kean Hua A; Mohd Dzulkifli SN; Parjo UK Int J Phytoremediation; 2022; 24(13):1431-1443. PubMed ID: 35130096 [TBL] [Abstract][Full Text] [Related]
20. Enhanced nutrient removal from municipal wastewater assisted by mixotrophic microalgal cultivation using glycerol. Gupta PL; Choi HJ; Lee SM Environ Sci Pollut Res Int; 2016 May; 23(10):10114-23. PubMed ID: 26867689 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]