BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

144 related articles for article (PubMed ID: 26117736)

  • 1. Synthesis of pH sensitive gold nanoparticles for potential application in radiosensitization.
    Das A; Chadha R; Maiti N; Kapoor S
    Mater Sci Eng C Mater Biol Appl; 2015 Oct; 55():34-41. PubMed ID: 26117736
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Synthesis and capping of water-dispersed gold nanoparticles by an amino acid: bioconjugation and binding studies.
    Wangoo N; Bhasin KK; Mehta SK; Suri CR
    J Colloid Interface Sci; 2008 Jul; 323(2):247-54. PubMed ID: 18486946
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Monodisperse sub-10 nm gold nanoparticles by reversing the order of addition in Turkevich method--the role of chloroauric acid.
    Sivaraman SK; Kumar S; Santhanam V
    J Colloid Interface Sci; 2011 Sep; 361(2):543-7. PubMed ID: 21719021
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Fluorosurfactant-capped gold nanoparticles-enhanced chemiluminescence from hydrogen peroxide-hydroxide and hydrogen peroxide-bicarbonate in presence of cobalt(II).
    Li J; Li Q; Lu C; Zhao L; Lin JM
    Spectrochim Acta A Mol Biomol Spectrosc; 2011 Feb; 78(2):700-5. PubMed ID: 21186138
    [TBL] [Abstract][Full Text] [Related]  

  • 5. pH Dependence of the size and crystallographic orientation of the gold nanoparticles prepared by seed-mediated growth.
    Rahman MR; Saleh FS; Okajima T; Ohsaka T
    Langmuir; 2011 Apr; 27(8):5126-35. PubMed ID: 21410194
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Synthesis of L-phenylalanine stabilized gold nanoparticles and their thermal stability.
    Nayak NC; Shin K
    J Nanosci Nanotechnol; 2006 Nov; 6(11):3512-6. PubMed ID: 17252801
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Facile solvothermal preparation of monodisperse gold nanoparticles and their engineered assembly of ferritin-gold nanoclusters.
    Choi J; Park S; Stojanović Z; Han HS; Lee J; Seok HK; Uskoković D; Lee KH
    Langmuir; 2013 Dec; 29(50):15698-703. PubMed ID: 24283573
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Radiosensitization effect of folate-conjugated gold nanoparticles on HeLa cancer cells under orthovoltage superficial radiotherapy techniques.
    Khoshgard K; Hashemi B; Arbabi A; Rasaee MJ; Soleimani M
    Phys Med Biol; 2014 May; 59(9):2249-63. PubMed ID: 24733041
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Biosynthesis and characterization of gold nanoparticles produced by laccase from Paraconiothyrium variabile.
    Faramarzi MA; Forootanfar H
    Colloids Surf B Biointerfaces; 2011 Oct; 87(1):23-7. PubMed ID: 21616647
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Physical basis and biological mechanisms of gold nanoparticle radiosensitization.
    Butterworth KT; McMahon SJ; Currell FJ; Prise KM
    Nanoscale; 2012 Aug; 4(16):4830-8. PubMed ID: 22767423
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Green synthesis of gold nanoparticles by the marine microalga Tetraselmis suecica.
    Shakibaie M; Forootanfar H; Mollazadeh-Moghaddam K; Bagherzadeh Z; Nafissi-Varcheh N; Shahverdi AR; Faramarzi MA
    Biotechnol Appl Biochem; 2010 Oct; 57(2):71-5. PubMed ID: 20923412
    [TBL] [Abstract][Full Text] [Related]  

  • 12. UV-Vis and NMR study of the formation of gold nanoparticles by citrate reduction: observation of gold-citrate aggregates.
    Doyen M; Bartik K; Bruylants G
    J Colloid Interface Sci; 2013 Jun; 399():1-5. PubMed ID: 23538051
    [TBL] [Abstract][Full Text] [Related]  

  • 13. The synthesis of biocompatible and SERS-active gold nanoparticles using chitosan.
    Potara M; Maniu D; Astilean S
    Nanotechnology; 2009 Aug; 20(31):315602. PubMed ID: 19597258
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Colloidal stability of gold nanoparticles modified with thiol compounds: bioconjugation and application in cancer cell imaging.
    Gao J; Huang X; Liu H; Zan F; Ren J
    Langmuir; 2012 Mar; 28(9):4464-71. PubMed ID: 22276658
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Water-dispersible tryptophan-protected gold nanoparticles prepared by the spontaneous reduction of aqueous chloroaurate ions by the amino acid.
    Selvakannan P; Mandal S; Phadtare S; Gole A; Pasricha R; Adyanthaya SD; Sastry M
    J Colloid Interface Sci; 2004 Jan; 269(1):97-102. PubMed ID: 14651900
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Biomolecule induced nanoparticle aggregation: effect of particle size on interparticle coupling.
    Basu S; Ghosh SK; Kundu S; Panigrahi S; Praharaj S; Pande S; Jana S; Pal T
    J Colloid Interface Sci; 2007 Sep; 313(2):724-34. PubMed ID: 17540397
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Completely dispersible PEGylated gold nanoparticles under physiological conditions: modification of gold nanoparticles with precisely controlled PEG-b-polyamine.
    Miyamoto D; Oishi M; Kojima K; Yoshimoto K; Nagasaki Y
    Langmuir; 2008 May; 24(9):5010-7. PubMed ID: 18386943
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Blending of HAuCl4 and histidine in aqueous solution: a simple approach to the Au10 cluster.
    Yang X; Shi M; Zhou R; Chen X; Chen H
    Nanoscale; 2011 Jun; 3(6):2596-601. PubMed ID: 21566802
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Resveratrol stabilized gold nanoparticles enable surface loading of doxorubicin and anticancer activity.
    Mohanty RK; Thennarasu S; Mandal AB
    Colloids Surf B Biointerfaces; 2014 Feb; 114():138-43. PubMed ID: 24176891
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Enzymatic formation of gold nanoparticles by submerged culture of the basidiomycete Lentinus edodes.
    Vetchinkina EP; Loshchinina EA; Burov AM; Dykman LA; Nikitina VE
    J Biotechnol; 2014 Jul; 182-183():37-45. PubMed ID: 24800960
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.