BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

283 related articles for article (PubMed ID: 26117773)

  • 21. Capability of parasulfonato calix[6]arene, as an anion dopant, and organic solvents in enhancing the sensitivity and loading of glucose oxidase (GOx) on polypyrrole film in a biosensor: a comparative study.
    Safarnavadeh V; Zare K; Fakhari AR
    Biosens Bioelectron; 2013 Nov; 49():159-63. PubMed ID: 23743327
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Glucose biosensor based on immobilization of glucose oxidase in poly(o-aminophenol) film on polypyrrole-Pt nanocomposite modified glassy carbon electrode.
    Li J; Lin X
    Biosens Bioelectron; 2007 Jun; 22(12):2898-905. PubMed ID: 17215117
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Preparation of Pt/polypyrrole-para toluene sulfonate hydrogen peroxide sensitive electrode for the utilizing as a biosensor.
    Çete S; Bal Ö
    Artif Cells Nanomed Biotechnol; 2013 Dec; 41(6):414-20. PubMed ID: 23336613
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Glucose oxidase-polypyrrole electrodes synthesized in p-toluenesulfonic acid and sodium p-toluenesulfonate.
    Ozyilmaz G; Ozyilmaz AT; Can F
    Prikl Biokhim Mikrobiol; 2011; 47(2):217-25. PubMed ID: 22808747
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Synergy Effect of Nanocrystalline Cellulose for the Biosensing Detection of Glucose.
    Esmaeili C; Abdi MM; Mathew AP; Jonoobi M; Oksman K; Rezayi M
    Sensors (Basel); 2015 Sep; 15(10):24681-97. PubMed ID: 26404269
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Reagentless Glucose Biosensor Based on Combination of Platinum Nanostructures and Polypyrrole Layer.
    German N; Popov A; Ramanaviciene A
    Biosensors (Basel); 2024 Mar; 14(3):. PubMed ID: 38534241
    [TBL] [Abstract][Full Text] [Related]  

  • 27. A novel glucose biosensor based on immobilization of glucose oxidase in chitosan on a glassy carbon electrode modified with gold-platinum alloy nanoparticles/multiwall carbon nanotubes.
    Kang X; Mai Z; Zou X; Cai P; Mo J
    Anal Biochem; 2007 Oct; 369(1):71-9. PubMed ID: 17678866
    [TBL] [Abstract][Full Text] [Related]  

  • 28. L-amino acid biosensor based on L-amino acid oxidase immobilized onto NiHCNFe/c-MWCNT/PPy/GC electrode.
    Lata S; Pundir CS
    Int J Biol Macromol; 2013 Mar; 54():250-7. PubMed ID: 23237796
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Design and Fabrication of Glucose Biosensors Based on Immobilization of Glucose Oxidase on Titanium Oxide Nanotube Arrays.
    Du A; De Eulate EA; Hariz A
    J Nanosci Nanotechnol; 2021 Sep; 21(9):4605-4614. PubMed ID: 33691839
    [TBL] [Abstract][Full Text] [Related]  

  • 30. A noninterference polypyrrole glucose biosensor.
    Chen C; Jiang Y; Kan J
    Biosens Bioelectron; 2006 Dec; 22(5):639-43. PubMed ID: 16540308
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Improved Performance of Electrochemically Synthesized Polypyrrole Nanofiber Array-Based Amperometric Glucose Biosensor via Crosslinking Technique.
    Jakhar P; Shukla M; Singh V
    J Nanosci Nanotechnol; 2019 Dec; 19(12):7605-7614. PubMed ID: 31196267
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Biocompatibility of CS-PPy nanocomposites and their application to glucose biosensor.
    Fang Y; Ni Y; Zhang G; Mao C; Huang X; Shen J
    Bioelectrochemistry; 2012 Dec; 88():1-7. PubMed ID: 22750413
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Electrochemical performance and biosensor application of TiO2 nanotube arrays with mesoporous structures constructed by chemical etching.
    Wang J; Xu G; Zhang X; Lv J; Zhang X; Zheng Z; Wu Y
    Dalton Trans; 2015 Apr; 44(16):7662-72. PubMed ID: 25811301
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Field-effect-transistor sensor based on enzyme-functionalized polypyrrole nanotubes for glucose detection.
    Yoon H; Ko S; Jang J
    J Phys Chem B; 2008 Aug; 112(32):9992-7. PubMed ID: 18646791
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Amperometric glucose biosensor based on glucose oxidase-lectin biospecific interaction.
    Zhang J; Wang C; Chen S; Yuan D; Zhong X
    Enzyme Microb Technol; 2013 Mar; 52(3):134-40. PubMed ID: 23410923
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Biofunctionalization of multiwalled carbon nanotubes by electropolymerized poly(pyrrole-concanavalin A) films.
    Papper V; Elouarzaki K; Gorgy K; Sukharaharja A; Cosnier S; Marks RS
    Chemistry; 2014 Oct; 20(42):13561-4. PubMed ID: 25179428
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Bienzymatic glucose biosensor based on co-immobilization of peroxidase and glucose oxidase on a carbon nanotubes electrode.
    Zhu L; Yang R; Zhai J; Tian C
    Biosens Bioelectron; 2007 Nov; 23(4):528-35. PubMed ID: 17764922
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Simple method for preparing glucose biosensor based on in-situ polypyrrole cross-linked chitosan/glucose oxidase/gold bionanocomposite film.
    Şenel M
    Mater Sci Eng C Mater Biol Appl; 2015 Mar; 48():287-93. PubMed ID: 25579925
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Hierarchically structured one-dimensional TiO2 for protein immobilization, direct electrochemistry, and mediator-free glucose sensing.
    Si P; Ding S; Yuan J; Lou XW; Kim DH
    ACS Nano; 2011 Sep; 5(9):7617-26. PubMed ID: 21866956
    [TBL] [Abstract][Full Text] [Related]  

  • 40. A glucose biosensor based on glucose oxidase immobilized on three-dimensional porous carbon electrodes.
    Chen J; Zhu R; Huang J; Zhang M; Liu H; Sun M; Wang L; Song Y
    Analyst; 2015 Aug; 140(16):5578-84. PubMed ID: 26114193
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 15.