These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

245 related articles for article (PubMed ID: 26118358)

  • 1. Efficient coupling of acoustic modes in microfluidic channel devices.
    Bora M; Shusteff M
    Lab Chip; 2015 Aug; 15(15):3192-202. PubMed ID: 26118358
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Comparison of measured acoustic power results gained by using three different methods on an ultrasonic low-frequency device.
    Petosić A; Svilar D; Ivancević B
    Ultrason Sonochem; 2011 Mar; 18(2):567-76. PubMed ID: 20850368
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Numerical study of the coupling layer between transducer and chip in acoustofluidic devices.
    Bodé WN; Bruus H
    J Acoust Soc Am; 2021 May; 149(5):3096. PubMed ID: 34241126
    [TBL] [Abstract][Full Text] [Related]  

  • 4. On-demand acoustic droplet splitting and steering in a disposable microfluidic chip.
    Park J; Jung JH; Park K; Destgeer G; Ahmed H; Ahmad R; Sung HJ
    Lab Chip; 2018 Jan; 18(3):422-432. PubMed ID: 29220055
    [TBL] [Abstract][Full Text] [Related]  

  • 5. An extended view for acoustofluidic particle manipulation: Scenarios for actuation modes and device resonance phenomenon for bulk-acoustic-wave devices.
    Özer MB; Çetin B
    J Acoust Soc Am; 2021 Apr; 149(4):2802. PubMed ID: 33940873
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Investigation of two-dimensional acoustic resonant modes in a particle separator.
    Townsend RJ; Hill M; Harris NR; White NM
    Ultrasonics; 2006 Dec; 44 Suppl 1():e467-71. PubMed ID: 16782151
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Tuning the Coupled-Domain Response for Efficient Ultrasonic Droplet Generation.
    Ledbetter AD; Shekhani HN; Binkley MM; Meacham JM
    IEEE Trans Ultrason Ferroelectr Freq Control; 2018 Oct; 65(10):1893-1904. PubMed ID: 30047875
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Suppression of an acoustic mode by an elastic mode of a liquid-filled spherical shell resonator.
    Lonzaga JB; Raymond JL; Mobley J; Gaitan DF
    J Acoust Soc Am; 2011 Feb; 129(2):597-603. PubMed ID: 21361418
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Acoustic Biosensors and Microfluidic Devices in the Decennium: Principles and Applications.
    Nair MP; Teo AJT; Li KHH
    Micromachines (Basel); 2021 Dec; 13(1):. PubMed ID: 35056189
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Design and simulation of a microfluidic device for acoustic cell separation.
    Shamloo A; Boodaghi M
    Ultrasonics; 2018 Mar; 84():234-243. PubMed ID: 29175517
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Determination of acoustic impedances of multi matching layers for narrowband ultrasonic airborne transducers at frequencies <2.5 MHz - Application of a genetic algorithm.
    Saffar S; Abdullah A
    Ultrasonics; 2012 Jan; 52(1):169-85. PubMed ID: 21893329
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Recent advances in microfluidic actuation and micro-object manipulation via surface acoustic waves.
    Destgeer G; Sung HJ
    Lab Chip; 2015 Jul; 15(13):2722-38. PubMed ID: 26016538
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Planar coil excitation of multifrequency shear wave transducers.
    Stevenson AC; Araya-Kleinsteuber B; Sethi RS; Metha HM; Lowe CR
    Biosens Bioelectron; 2005 Jan; 20(7):1298-304. PubMed ID: 15590282
    [TBL] [Abstract][Full Text] [Related]  

  • 14. High amplitude nonlinear acoustic wave driven flow fields in cylindrical and conical resonators.
    Antao DS; Farouk B
    J Acoust Soc Am; 2013 Aug; 134(2):917-32. PubMed ID: 23927091
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Numerical analysis of wave generation and propagation in a focused surface acoustic wave device for potential microfluidics applications.
    Sankaranarayanan SK; Bhethanabotla VR
    IEEE Trans Ultrason Ferroelectr Freq Control; 2009 Mar; 56(3):631-43. PubMed ID: 19411221
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Design, simulation, and visualization of R-SPUDT devices with transverse mode suppression.
    Solal M; Holmgren O; Kokkonen K
    IEEE Trans Ultrason Ferroelectr Freq Control; 2010; 57(2):412-20. PubMed ID: 20178907
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Temperature-controlled MPa-pressure ultrasonic cell manipulation in a microfluidic chip.
    Ohlin M; Iranmanesh I; Christakou AE; Wiklund M
    Lab Chip; 2015 Aug; 15(16):3341-9. PubMed ID: 26156858
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Directional scholte wave generation and detection using interdigital capacitive micromachined ultrasonic transducers.
    McLean J; Degertekin FL
    IEEE Trans Ultrason Ferroelectr Freq Control; 2004 Jun; 51(6):756-64. PubMed ID: 15244289
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Numerical study of bulk acoustofluidic devices driven by thin-film transducers and whole-system resonance modes.
    Steckel AG; Bruus H
    J Acoust Soc Am; 2021 Jul; 150(1):634. PubMed ID: 34340467
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Resonance control of acoustic focusing systems through an environmental reference table and impedance spectroscopy.
    Kalb DM; Olson RJ; Sosik HM; Woods TA; Graves SW
    PLoS One; 2018; 13(11):e0207532. PubMed ID: 30427942
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 13.