These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
152 related articles for article (PubMed ID: 26118389)
1. Reduction of phosphorus, nitrogen and microorganisms in pilot scale sand filter beds containing biotite, treating primary wastewater. Matikka V; Heinonen-Tanski H Environ Technol; 2016; 37(1):46-54. PubMed ID: 26118389 [TBL] [Abstract][Full Text] [Related]
2. Reducing phosphorus (P) losses from drained agricultural fields with iron coated sand (- glauconite) filters. Vandermoere S; Ralaizafisoloarivony NA; Van Ranst E; De Neve S Water Res; 2018 Sep; 141():329-339. PubMed ID: 29804019 [TBL] [Abstract][Full Text] [Related]
3. Upflow anaerobic sludge blanket reactor--a review. Bal AS; Dhagat NN Indian J Environ Health; 2001 Apr; 43(2):1-82. PubMed ID: 12397675 [TBL] [Abstract][Full Text] [Related]
4. Phosphorus removal from wastewater by field-scale fortified filter beds during a one-year study. Kholoma E; Renman G; Renman A Environ Technol; 2016 Dec; 37(23):2953-63. PubMed ID: 27043354 [TBL] [Abstract][Full Text] [Related]
5. Removal of organic pollutants and nutrients from olive mill wastewater by a sand filter. Achak M; Mandi L; Ouazzani N J Environ Manage; 2009 Jun; 90(8):2771-9. PubMed ID: 19406561 [TBL] [Abstract][Full Text] [Related]
6. Iron-ozone catalytic oxidation reactive filtration of municipal wastewater at field pilot and full-scale with high-efficiency pollutant removal and potential negative CO Baker MC; McCarthy D; Taslakyan L; Henchion G; Mannion R; Strawn DG; Möller G Water Environ Res; 2023 May; 95(5):e10876. PubMed ID: 37142261 [TBL] [Abstract][Full Text] [Related]
7. Combination of granular activated carbon adsorption and deep-bed filtration as a single advanced wastewater treatment step for organic micropollutant and phosphorus removal. Altmann J; Rehfeld D; Träder K; Sperlich A; Jekel M Water Res; 2016 Apr; 92():131-9. PubMed ID: 26849316 [TBL] [Abstract][Full Text] [Related]
8. Effects of changing hydraulic and organic loading rates on pollutant reduction in bark, charcoal and sand filters treating greywater. Dalahmeh SS; Pell M; Hylander LD; Lalander C; Vinnerås B; Jönsson H J Environ Manage; 2014 Jan; 132():338-45. PubMed ID: 24342875 [TBL] [Abstract][Full Text] [Related]
9. Treatment of municipal wastewater in full-scale on-site sand filter reduces BOD efficiently but does not reach requirements for nitrogen and phosphorus removal. Laaksonen P; Sinkkonen A; Zaitsev G; Mäkinen E; Grönroos T; Romantschuk M Environ Sci Pollut Res Int; 2017 Apr; 24(12):11446-11458. PubMed ID: 28316046 [TBL] [Abstract][Full Text] [Related]
10. Treatment of potato farm wastewater with sand filtration. Bosak VK; VanderZaag AC; Crolla A; Kinsley C; Chabot D; Miller SS; Gordon RJ Environ Technol; 2016; 37(13):1597-604. PubMed ID: 26806787 [TBL] [Abstract][Full Text] [Related]
11. Organic carbon and ammonium nitrogen removal in a laboratory sand percolation filter. Rodgers M; Clifford E; Mulqueen J; Ballantyne P J Environ Sci Health A Tox Hazard Subst Environ Eng; 2004; 39(9):2355-68. PubMed ID: 15478928 [TBL] [Abstract][Full Text] [Related]
12. Effect of temperature on the performance of laboratory-scale phosphorus-removing filter beds in on-site wastewater treatment. Herrmann I; Nordqvist K; Hedström A; Viklander M Chemosphere; 2014 Dec; 117():360-6. PubMed ID: 25155452 [TBL] [Abstract][Full Text] [Related]
13. The use of laboratory sand, soil and crushed-glass filter columns for polishing domestic-strength synthetic wastewater that has undergone secondary treatment. Healy MG; Burke P; Rodgers M J Environ Sci Health A Tox Hazard Subst Environ Eng; 2010 Oct; 45(12):1635-41. PubMed ID: 20730656 [TBL] [Abstract][Full Text] [Related]
14. The ecological filter system for treatment of decentralized wastewater. Zhong K; Luo YY; Wu ZS; He Q; Hu XB; Jie QW; Li YT; Wang SJ Water Sci Technol; 2016 Oct; 74(7):1553-1560. PubMed ID: 27763335 [TBL] [Abstract][Full Text] [Related]
15. Removal of contaminants and pathogens from secondary effluents using intermittent sand filters. Bali M; Gueddari M; Boukchina R Water Sci Technol; 2011; 64(10):2038-43. PubMed ID: 22105126 [TBL] [Abstract][Full Text] [Related]
16. The application of GAC sandwich slow sand filtration to remove pharmaceutical and personal care products. Li J; Zhou Q; Campos LC Sci Total Environ; 2018 Sep; 635():1182-1190. PubMed ID: 29710573 [TBL] [Abstract][Full Text] [Related]
17. Development of model simulation based on BioWin and dynamic analyses on advanced nitrate nitrogen removal in deep bed denitrification filter. Ji X; Liu Y; Zhang J; Huang D; Zhou P; Zheng Z Bioprocess Biosyst Eng; 2019 Feb; 42(2):199-212. PubMed ID: 30353223 [TBL] [Abstract][Full Text] [Related]
18. Slow sand filtration of secondary clarifier effluent for wastewater reuse. Langenbach K; Kuschk P; Horn H; Kästner M Environ Sci Technol; 2009 Aug; 43(15):5896-901. PubMed ID: 19731694 [TBL] [Abstract][Full Text] [Related]
19. Pretreatment of turkey fat-containing wastewater in coarse sand and gravel/coarse sand bioreactors. Gaur RS; Cai L; Tuovinen OH; Mancl KM Bioresour Technol; 2010 Feb; 101(3):1106-10. PubMed ID: 19793650 [TBL] [Abstract][Full Text] [Related]
20. Sequential UASB and dual media packed-bed reactors for domestic wastewater treatment - experiment and simulation. Rodríguez-Gómez R; Renman G Water Sci Technol; 2016; 73(12):2959-70. PubMed ID: 27332842 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]