These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
345 related articles for article (PubMed ID: 26119315)
1. [Bone and Nutrition. Vitamin D independent calcium absorption]. Masuyama R Clin Calcium; 2015 Jul; 25(7):1023-8. PubMed ID: 26119315 [TBL] [Abstract][Full Text] [Related]
2. Dietary calcium and phosphorus ratio regulates bone mineralization and turnover in vitamin D receptor knockout mice by affecting intestinal calcium and phosphorus absorption. Masuyama R; Nakaya Y; Katsumata S; Kajita Y; Uehara M; Tanaka S; Sakai A; Kato S; Nakamura T; Suzuki K J Bone Miner Res; 2003 Jul; 18(7):1217-26. PubMed ID: 12854831 [TBL] [Abstract][Full Text] [Related]
3. Vitamin D resistance. Bouillon R; Verstuyf A; Mathieu C; Van Cromphaut S; Masuyama R; Dehaes P; Carmeliet G Best Pract Res Clin Endocrinol Metab; 2006 Dec; 20(4):627-45. PubMed ID: 17161336 [TBL] [Abstract][Full Text] [Related]
4. Intestinal calcium absorption: Molecular vitamin D mediated mechanisms. Bouillon R; Van Cromphaut S; Carmeliet G J Cell Biochem; 2003 Feb; 88(2):332-9. PubMed ID: 12520535 [TBL] [Abstract][Full Text] [Related]
5. Intestinal calcium transporter genes are upregulated by estrogens and the reproductive cycle through vitamin D receptor-independent mechanisms. Van Cromphaut SJ; Rummens K; Stockmans I; Van Herck E; Dijcks FA; Ederveen AG; Carmeliet P; Verhaeghe J; Bouillon R; Carmeliet G J Bone Miner Res; 2003 Oct; 18(10):1725-36. PubMed ID: 14584880 [TBL] [Abstract][Full Text] [Related]
6. Physiological functions of vitamin D: what we have learned from global and conditional VDR knockout mouse studies. Suda T; Masuyama R; Bouillon R; Carmeliet G Curr Opin Pharmacol; 2015 Jun; 22():87-99. PubMed ID: 25938686 [TBL] [Abstract][Full Text] [Related]
7. Duodenal calcium absorption in vitamin D receptor-knockout mice: functional and molecular aspects. Van Cromphaut SJ; Dewerchin M; Hoenderop JG; Stockmans I; Van Herck E; Kato S; Bindels RJ; Collen D; Carmeliet P; Bouillon R; Carmeliet G Proc Natl Acad Sci U S A; 2001 Nov; 98(23):13324-9. PubMed ID: 11687634 [TBL] [Abstract][Full Text] [Related]
8. Bone mineral homeostasis in spontaneously diabetic BB rats. I. Abnormal vitamin D metabolism and impaired active intestinal calcium absorption. Nyomba BL; Verhaeghe J; Thomasset M; Lissens W; Bouillon R Endocrinology; 1989 Feb; 124(2):565-72. PubMed ID: 2536313 [TBL] [Abstract][Full Text] [Related]
10. Tight junction proteins claudin-2 and -12 are critical for vitamin D-dependent Ca2+ absorption between enterocytes. Fujita H; Sugimoto K; Inatomi S; Maeda T; Osanai M; Uchiyama Y; Yamamoto Y; Wada T; Kojima T; Yokozaki H; Yamashita T; Kato S; Sawada N; Chiba H Mol Biol Cell; 2008 May; 19(5):1912-21. PubMed ID: 18287530 [TBL] [Abstract][Full Text] [Related]
11. Intestinal Regulation of Calcium: Vitamin D and Bone Physiology. Christakos S; Veldurthy V; Patel N; Wei R Adv Exp Med Biol; 2017; 1033():3-12. PubMed ID: 29101648 [TBL] [Abstract][Full Text] [Related]
12. Intestinal vitamin D receptor is required for normal calcium and bone metabolism in mice. Xue Y; Fleet JC Gastroenterology; 2009 Apr; 136(4):1317-27, e1-2. PubMed ID: 19254681 [TBL] [Abstract][Full Text] [Related]
13. Dietary phosphorus restriction reverses the impaired bone mineralization in vitamin D receptor knockout mice. Masuyama R; Nakaya Y; Tanaka S; Tsurukami H; Nakamura T; Watanabe S; Yoshizawa T; Kato S; Suzuki K Endocrinology; 2001 Jan; 142(1):494-7. PubMed ID: 11145614 [TBL] [Abstract][Full Text] [Related]
14. Correlations between the vitamin D-induced calcium binding protein and intestinal absorption of calcium. Taylor AN; Wasserman RH Fed Proc; 1969; 28(6):1834-8. PubMed ID: 4901083 [No Abstract] [Full Text] [Related]
15. [Classical actions of vitamin D: insights from human genetics and from mouse models on calcium and phosphate homeostasis]. Jehan F; Voloc A Biol Aujourdhui; 2014; 208(1):45-53. PubMed ID: 24948018 [TBL] [Abstract][Full Text] [Related]
16. [Regulation of calcium homeostasis and cellular functions by vitamin D]. Miyaura C; Suda T Tanpakushitsu Kakusan Koso; 1988 Sep; 33(12):2311-23. PubMed ID: 2856007 [No Abstract] [Full Text] [Related]
17. Novel role of the vitamin D receptor in maintaining the integrity of the intestinal mucosal barrier. Kong J; Zhang Z; Musch MW; Ning G; Sun J; Hart J; Bissonnette M; Li YC Am J Physiol Gastrointest Liver Physiol; 2008 Jan; 294(1):G208-16. PubMed ID: 17962355 [TBL] [Abstract][Full Text] [Related]
18. Fibroblast growth factor-23 abolishes 1,25-dihydroxyvitamin D₃-enhanced duodenal calcium transport in male mice. Khuituan P; Teerapornpuntakit J; Wongdee K; Suntornsaratoon P; Konthapakdee N; Sangsaksri J; Sripong C; Krishnamra N; Charoenphandhu N Am J Physiol Endocrinol Metab; 2012 Apr; 302(8):E903-13. PubMed ID: 22275752 [TBL] [Abstract][Full Text] [Related]
19. The vitamin D endocrine system, calcium metabolism, and osteoporosis. Slovik DM Spec Top Endocrinol Metab; 1983; 5():83-148. PubMed ID: 6367121 [TBL] [Abstract][Full Text] [Related]
20. Vitamin D signaling in osteocytes: effects on bone and mineral homeostasis. Lieben L; Carmeliet G Bone; 2013 Jun; 54(2):237-43. PubMed ID: 23072922 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]