These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

339 related articles for article (PubMed ID: 26119315)

  • 21. Recent studies on the biological actions of vitamin D on intestinal transport and the electrophysiology of peripheral nerve and cardiac muscle.
    Wasserman RH; Brindak ME; Buddle MM; Cai Q; Davis FC; Fullmer CS; Gilmour RF; Hu C; Mykkanen HM; Tapper DN
    Prog Clin Biol Res; 1990; 332():99-126. PubMed ID: 2184443
    [TBL] [Abstract][Full Text] [Related]  

  • 22. The delicate balance between vitamin D, calcium and bone homeostasis: lessons learned from intestinal- and osteocyte-specific VDR null mice.
    Lieben L; Carmeliet G
    J Steroid Biochem Mol Biol; 2013 Jul; 136():102-6. PubMed ID: 23022574
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Calcemic actions of vitamin D: effects on the intestine, kidney and bone.
    Lieben L; Carmeliet G; Masuyama R
    Best Pract Res Clin Endocrinol Metab; 2011 Aug; 25(4):561-72. PubMed ID: 21872798
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Vitamin D and intestinal calcium absorption.
    Christakos S; Dhawan P; Porta A; Mady LJ; Seth T
    Mol Cell Endocrinol; 2011 Dec; 347(1-2):25-9. PubMed ID: 21664413
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Normocalcemia is maintained in mice under conditions of calcium malabsorption by vitamin D-induced inhibition of bone mineralization.
    Lieben L; Masuyama R; Torrekens S; Van Looveren R; Schrooten J; Baatsen P; Lafage-Proust MH; Dresselaers T; Feng JQ; Bonewald LF; Meyer MB; Pike JW; Bouillon R; Carmeliet G
    J Clin Invest; 2012 May; 122(5):1803-15. PubMed ID: 22523068
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Vitamin D and intestinal transport of calcium: effects of prednisolone.
    Lukert BP; Stanbury SW; Mawer EB
    Endocrinology; 1973 Sep; 93(3):718-22. PubMed ID: 4352809
    [No Abstract]   [Full Text] [Related]  

  • 27. Calcium absorption during development: experimental studies of the rat small intestine.
    Toverud SU; Dostal LA
    J Pediatr Gastroenterol Nutr; 1986; 5(5):688-95. PubMed ID: 3020219
    [TBL] [Abstract][Full Text] [Related]  

  • 28. More Than Bone Health: The Many Roles for Vitamin D.
    Beckett E
    Nutrients; 2020 Aug; 12(8):. PubMed ID: 32785003
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Phosphate-dependent luminal ATP metabolism regulates transcellular calcium transport in intestinal epithelial cells.
    Uekawa A; Yamanaka H; Lieben L; Kimira Y; Uehara M; Yamamoto Y; Kato S; Ito K; Carmeliet G; Masuyama R
    FASEB J; 2018 Apr; 32(4):1903-1915. PubMed ID: 29282249
    [TBL] [Abstract][Full Text] [Related]  

  • 30. [Exogenous estrogen improved calcium homeostasis and skeletal mineralization in vitamin D receptor gene knockout female mice].
    Li BY; Tong J; Zhang ZL
    Sheng Li Xue Bao; 2006 Dec; 58(6):573-6. PubMed ID: 17173192
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Osteopetrotic (op/op) mice are unable to maintain serum calcium levels despite hyperabsorption of calcium.
    McCary LC; DeLuca HF
    Endocrinology; 1996 Mar; 137(3):1049-56. PubMed ID: 8603573
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Selective biological response by target organs (intestine, kidney, and bone) to 1,25-dihydroxyvitamin D3 and two analogues.
    Norman AW; Sergeev IN; Bishop JE; Okamura WH
    Cancer Res; 1993 Sep; 53(17):3935-42. PubMed ID: 8395333
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Vitamin D receptor in osteoblasts is a negative regulator of bone mass control.
    Yamamoto Y; Yoshizawa T; Fukuda T; Shirode-Fukuda Y; Yu T; Sekine K; Sato T; Kawano H; Aihara K; Nakamichi Y; Watanabe T; Shindo M; Inoue K; Inoue E; Tsuji N; Hoshino M; Karsenty G; Metzger D; Chambon P; Kato S; Imai Y
    Endocrinology; 2013 Mar; 154(3):1008-20. PubMed ID: 23389957
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Vitamin D receptor knockout mice exhibit elongated intestinal microvilli and increased ezrin expression.
    Kühne H; Hause G; Grundmann SM; Schutkowski A; Brandsch C; Stangl GI
    Nutr Res; 2016 Feb; 36(2):184-92. PubMed ID: 26606857
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Direct action of 1,25-dihydroxyvitamin D on bone: VDRKO bone shows excessive bone formation in normal mineral condition.
    Tanaka H; Seino Y
    J Steroid Biochem Mol Biol; 2004 May; 89-90(1-5):343-5. PubMed ID: 15225798
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Vitamin D and the intestine: Review and update.
    Christakos S; Li S; De La Cruz J; Shroyer NF; Criss ZK; Verzi MP; Fleet JC
    J Steroid Biochem Mol Biol; 2020 Feb; 196():105501. PubMed ID: 31655181
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Efferent loop small intestinal vitamin D receptor concentration and bone mineral density after Billroth II (Polya) gastrectomy in humans.
    Pazianas M; Zaidi M; Subhani JM; Finch PJ; Ang L; Maxwell JD
    Calcif Tissue Int; 2003 Apr; 72(4):485-90. PubMed ID: 12574872
    [TBL] [Abstract][Full Text] [Related]  

  • 38. The role of vitamin D in the endocrinology controlling calcium homeostasis.
    Fleet JC
    Mol Cell Endocrinol; 2017 Sep; 453():36-45. PubMed ID: 28400273
    [TBL] [Abstract][Full Text] [Related]  

  • 39. [Metabolism of vitamin D (literature survey)].
    Shokina NI
    Vopr Okhr Materin Det; 1975 Apr; 20(4):57-60. PubMed ID: 1154690
    [No Abstract]   [Full Text] [Related]  

  • 40. Mechanisms involved in vitamin D mediated intestinal calcium absorption and in non-classical actions of vitamin D.
    Christakos S; Dhawan P; Ajibade D; Benn BS; Feng J; Joshi SS
    J Steroid Biochem Mol Biol; 2010 Jul; 121(1-2):183-7. PubMed ID: 20214989
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 17.