These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
263 related articles for article (PubMed ID: 26119453)
1. Hydrophobic Cysteine Poly(disulfide)-based Redox-Hypersensitive Nanoparticle Platform for Cancer Theranostics. Wu J; Zhao L; Xu X; Bertrand N; Choi WI; Yameen B; Shi J; Shah V; Mulvale M; MacLean JL; Farokhzad OC Angew Chem Int Ed Engl; 2015 Aug; 54(32):9218-23. PubMed ID: 26119453 [TBL] [Abstract][Full Text] [Related]
2. pH-sensitive and redox-responsive poly(tetraethylene glycol) nanoparticle-based platform for cancer treatment. Sun Q; Kong N; Zhao H; Zhang X; Tao Q; Jiang H; Xuan A; Li X Nanotechnology; 2024 Sep; 35(49):. PubMed ID: 39293467 [TBL] [Abstract][Full Text] [Related]
3. Multifunctional pH-sensitive polymeric nanoparticles for theranostics evaluated experimentally in cancer. Liu Y; Feng L; Liu T; Zhang L; Yao Y; Yu D; Wang L; Zhang N Nanoscale; 2014 Mar; 6(6):3231-42. PubMed ID: 24500240 [TBL] [Abstract][Full Text] [Related]
4. Cysteine-based redox-responsive nanoparticles for small-molecule agent delivery. Wang L; You X; Lou Q; He S; Zhang J; Dai C; Zhao M; Zhao M; Hu H; Wu J Biomater Sci; 2019 Oct; 7(10):4218-4229. PubMed ID: 31389415 [TBL] [Abstract][Full Text] [Related]
5. Development of l-Tyrosine-Based Enzyme-Responsive Amphiphilic Poly(ester-urethane) Nanocarriers for Multiple Drug Delivery to Cancer Cells. Aluri R; Jayakannan M Biomacromolecules; 2017 Jan; 18(1):189-200. PubMed ID: 28064504 [TBL] [Abstract][Full Text] [Related]
6. Novel free-paclitaxel-loaded redox-responsive nanoparticles based on a disulfide-linked poly(ethylene glycol)-drug conjugate for intracellular drug delivery: synthesis, characterization, and antitumor activity in vitro and in vivo. Chuan X; Song Q; Lin J; Chen X; Zhang H; Dai W; He B; Wang X; Zhang Q Mol Pharm; 2014 Oct; 11(10):3656-70. PubMed ID: 25208098 [TBL] [Abstract][Full Text] [Related]
7. Triggered-release polymeric conjugate micelles for on-demand intracellular drug delivery. Cao Y; Gao M; Chen C; Fan A; Zhang J; Kong D; Wang Z; Peer D; Zhao Y Nanotechnology; 2015 Mar; 26(11):115101. PubMed ID: 25708980 [TBL] [Abstract][Full Text] [Related]
9. Multi-stimuli-responsive nanomicelles fabricated using synthetic polymer polylysine conjugates for tumor microenvironment dependent drug delivery. Augustine R; Kim DK; Kalva N; Eom KH; Kim JH; Kim I J Mater Chem B; 2020 Jul; 8(26):5745-5755. PubMed ID: 32519736 [TBL] [Abstract][Full Text] [Related]
10. Comparison between novel star-like redox-sensitive amphiphilic block copolymer and its linear counterpart copolymer as nanocarriers for doxorubicin. Murjan S; Saeedi S; Nabid MR Drug Dev Ind Pharm; 2020 Apr; 46(4):646-658. PubMed ID: 32208035 [TBL] [Abstract][Full Text] [Related]
11. Morphology Regulation in Redox Destructible Amphiphilic Block Copolymers and Impact on Intracellular Drug Delivery. Bej R; Sarkar J; Ray D; Aswal VK; Ghosh S Macromol Biosci; 2018 Jul; 18(7):e1800057. PubMed ID: 29782698 [TBL] [Abstract][Full Text] [Related]
12. Comb-like amphiphilic copolymers bearing acetal-functionalized backbones with the ability of acid-triggered hydrophobic-to-hydrophilic transition as effective nanocarriers for intracellular release of curcumin. Zhao J; Wang H; Liu J; Deng L; Liu J; Dong A; Zhang J Biomacromolecules; 2013 Nov; 14(11):3973-84. PubMed ID: 24107101 [TBL] [Abstract][Full Text] [Related]
13. Docetaxel-loaded PLGA and PLGA-PEG nanoparticles for intravenous application: pharmacokinetics and biodistribution profile. Rafiei P; Haddadi A Int J Nanomedicine; 2017; 12():935-947. PubMed ID: 28184163 [TBL] [Abstract][Full Text] [Related]
14. Redox-sensitive self-assembled nanoparticles based on alpha-tocopherol succinate-modified heparin for intracellular delivery of paclitaxel. Yang X; Cai X; Yu A; Xi Y; Zhai G J Colloid Interface Sci; 2017 Jun; 496():311-326. PubMed ID: 28237749 [TBL] [Abstract][Full Text] [Related]
15. Disulfide-Linked Amphiphilic Polymer-Docetaxel Conjugates Assembled Redox-Sensitive Micelles for Efficient Antitumor Drug Delivery. Zhang P; Zhang H; He W; Zhao D; Song A; Luan Y Biomacromolecules; 2016 May; 17(5):1621-32. PubMed ID: 27018501 [TBL] [Abstract][Full Text] [Related]
16. Docetaxel-loaded redox-sensitive nanoparticles self-assembling from poly(caprolactone) conjugates with disulfide-linked poly(ethylene glycol). Shi Y; Li C; Yang M; Pan X; Hu J J Biomater Sci Polym Ed; 2022 Dec; 33(17):2185-2201. PubMed ID: 35796690 [TBL] [Abstract][Full Text] [Related]
17. Bio-Inspired Amphoteric Polymer for Triggered-Release Drug Delivery on Breast Cancer Cells Based on Metal Coordination. Chen PC; Lai JJ; Huang CJ ACS Appl Mater Interfaces; 2021 Jun; 13(22):25663-25673. PubMed ID: 34032419 [TBL] [Abstract][Full Text] [Related]
18. Poly(lactide)-vitamin E derivative/montmorillonite nanoparticle formulations for the oral delivery of Docetaxel. Feng SS; Mei L; Anitha P; Gan CW; Zhou W Biomaterials; 2009 Jul; 30(19):3297-306. PubMed ID: 19299012 [TBL] [Abstract][Full Text] [Related]
19. Synthesis, in vitro characterization, and anti-tumor effects of novel polystyrene-poly(amide-ether-ester-imide) co-polymeric micelles for delivery of docetaxel in breast cancer in Balb/C mice. Varshosaz J; Enteshari S; Hassanzadeh F; Hashemi-Beni B; Minaiyan M; Mirsafaei R Drug Dev Ind Pharm; 2018 Jul; 44(7):1139-1157. PubMed ID: 29436875 [TBL] [Abstract][Full Text] [Related]
20. Targeted Delivery of Cabazitaxel by Conjugation to Albumin-PEG-folate Nanoparticles Using a Cysteine-acrylate Linker and Simple Synthesis Conditions. Khoeeniha MK; Esfandyari-Manesh M; Behrouz H; Amini M; Varnamkhasti BS; Atyabi F; Dinarvand R Curr Drug Deliv; 2017; 14(8):1120-1129. PubMed ID: 27875950 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]