BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

757 related articles for article (PubMed ID: 26119530)

  • 1. Short-term monocular deprivation alters early components of visual evoked potentials.
    Lunghi C; Berchicci M; Morrone MC; Di Russo F
    J Physiol; 2015 Oct; 593(19):4361-72. PubMed ID: 26119530
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Swept contrast visual evoked potentials and their plasticity following monocular deprivation in mice.
    Lickey ME; Pham TA; Gordon B
    Vision Res; 2004 Dec; 44(28):3381-7. PubMed ID: 15536006
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Monocular deprivation of Fourier phase information boosts the deprived eye's dominance during interocular competition but not interocular phase combination.
    Bai J; Dong X; He S; Bao M
    Neuroscience; 2017 Jun; 352():122-130. PubMed ID: 28391010
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Short-term monocular patching boosts the patched eye's response in visual cortex.
    Zhou J; Baker DH; Simard M; Saint-Amour D; Hess RF
    Restor Neurol Neurosci; 2015; 33(3):381-7. PubMed ID: 26410580
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Adult visual experience promotes recovery of primary visual cortex from long-term monocular deprivation.
    Fischer QS; Aleem S; Zhou H; Pham TA
    Learn Mem; 2007 Sep; 14(9):573-80. PubMed ID: 17761542
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Effects of different forms of monocular deprivation on primary visual cortex maps.
    Jaffer S; Vorobyov V; Sengpiel F
    Vis Neurosci; 2012 Sep; 29(4-5):247-53. PubMed ID: 22882840
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Involvement of T-type Ca2+ channels in the potentiation of synaptic and visual responses during the critical period in rat visual cortex.
    Yoshimura Y; Inaba M; Yamada K; Kurotani T; Begum T; Reza F; Maruyama T; Komatsu Y
    Eur J Neurosci; 2008 Aug; 28(4):730-43. PubMed ID: 18657180
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Critical period for the monocular deprivation effect in rats: assessment with sweep visually evoked potentials.
    Guire ES; Lickey ME; Gordon B
    J Neurophysiol; 1999 Jan; 81(1):121-8. PubMed ID: 9914273
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Long-term effects of monocular deprivation revealed with binocular rivalry gratings modulated in luminance and in color.
    Lunghi C; Burr DC; Morrone MC
    J Vis; 2013 May; 13(6):. PubMed ID: 23637272
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Molecular mechanism for loss of visual cortical responsiveness following brief monocular deprivation.
    Heynen AJ; Yoon BJ; Liu CH; Chung HJ; Huganir RL; Bear MF
    Nat Neurosci; 2003 Aug; 6(8):854-62. PubMed ID: 12886226
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Natural-scene-based Steady-state Visual Evoked Potentials Reveal Effects of Short-term Monocular Deprivation.
    Lyu L; He S; Jiang Y; Engel SA; Bao M
    Neuroscience; 2020 May; 435():10-21. PubMed ID: 32229234
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Temporary monocular occlusion facilitates binocular fusion during rivalry.
    Sheynin Y; Proulx S; Hess RF
    J Vis; 2019 May; 19(5):23. PubMed ID: 31136647
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Monocular visual deprivation at the critical period modulates photic evoked responses.
    Yan HQ; Mazow ML; Dafny N
    Brain Res Bull; 1995; 36(6):545-8. PubMed ID: 7757488
    [TBL] [Abstract][Full Text] [Related]  

  • 14. A switch from inter-ocular to inter-hemispheric suppression following monocular deprivation in the rat visual cortex.
    Pietrasanta M; Restani L; Cerri C; Olcese U; Medini P; Caleo M
    Eur J Neurosci; 2014 Jul; 40(1):2283-92. PubMed ID: 24689940
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Lack of lateral inhibitory interactions in visual cortex of monocularly deprived cats.
    Kasamatsu T; Kitano M; Sutter EE; Norcia AM
    Vision Res; 1998 Jan; 38(1):1-12. PubMed ID: 9474370
    [TBL] [Abstract][Full Text] [Related]  

  • 16. [Binocular competitive mechanisms in the visual cortex in early developing kittens of monocular deprivation and reverse suture revealed by pattern visual evoked potential].
    Shou TD; Liu H; Xue JT
    Sheng Li Xue Bao; 1994 Jun; 46(3):281-7. PubMed ID: 7973816
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Brief localised monocular deprivation in adults alters binocular rivalry predominance retinotopically and reduces spatial inhibition.
    Han S; Alais D; MacDougall H; Verstraten FAJ
    Sci Rep; 2020 Oct; 10(1):18739. PubMed ID: 33127963
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Visual recovery after monocular deprivation is driven by absolute, rather than relative, visually evoked activity levels.
    Mitchell DE; Gingras G
    Curr Biol; 1998 Oct; 8(21):1179-82. PubMed ID: 9799738
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Crossmodal plasticity following short-term monocular deprivation.
    Federici A; Bernardi G; Senna I; Fantoni M; Ernst MO; Ricciardi E; Bottari D
    Neuroimage; 2023 Jul; 274():120141. PubMed ID: 37120043
    [TBL] [Abstract][Full Text] [Related]  

  • 20. The shift in ocular dominance from short-term monocular deprivation exhibits no dependence on duration of deprivation.
    Min SH; Baldwin AS; Reynaud A; Hess RF
    Sci Rep; 2018 Nov; 8(1):17083. PubMed ID: 30459412
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 38.