These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

138 related articles for article (PubMed ID: 26119585)

  • 21. Common variants of the novel type 2 diabetes genes CDKAL1 and HHEX/IDE are associated with decreased pancreatic beta-cell function.
    Pascoe L; Tura A; Patel SK; Ibrahim IM; Ferrannini E; Zeggini E; Weedon MN; Mari A; Hattersley AT; McCarthy MI; Frayling TM; Walker M; ;
    Diabetes; 2007 Dec; 56(12):3101-4. PubMed ID: 17804762
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Adaptive human CDKAL1 variants underlie hormonal response variations at the enteroinsular axis.
    Chang CL; Cai JJ; Huang SY; Cheng PJ; Chueh HY; Hsu SY
    PLoS One; 2014; 9(9):e105410. PubMed ID: 25222615
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Deletion of CDKAL1 affects mitochondrial ATP generation and first-phase insulin exocytosis.
    Ohara-Imaizumi M; Yoshida M; Aoyagi K; Saito T; Okamura T; Takenaka H; Akimoto Y; Nakamichi Y; Takanashi-Yanobu R; Nishiwaki C; Kawakami H; Kato N; Hisanaga S; Kakei M; Nagamatsu S
    PLoS One; 2010 Dec; 5(12):e15553. PubMed ID: 21151568
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Association of glycosylated hemoglobin with the gene encoding CDKAL1 in the Korean Association Resource (KARE) study.
    Ryu J; Lee C
    Hum Mutat; 2012 Apr; 33(4):655-9. PubMed ID: 22290723
    [TBL] [Abstract][Full Text] [Related]  

  • 25. CDKAL1 and HHEX are associated with type 2 diabetes-related traits among Yup'ik people.
    Klimentidis YC; Lemas DJ; Wiener HH; O'Brien DM; Havel PJ; Stanhope KL; Hopkins SE; Tiwari HK; Boyer BB
    J Diabetes; 2014 May; 6(3):251-9. PubMed ID: 24112421
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Trans-ethnic fine mapping identifies a novel independent locus at the 3' end of CDKAL1 and novel variants of several susceptibility loci for type 2 diabetes in a Han Chinese population.
    Kuo JZ; Sheu WH; Assimes TL; Hung YJ; Absher D; Chiu YF; Mak J; Wang JS; Kwon S; Hsu CC; Goodarzi MO; Lee IT; Knowles JW; Miller BE; Lee WJ; Juang JM; Wang TD; Guo X; Taylor KD; Chuang LM; Hsiung CA; Quertermous T; Rotter JI; Chen YD
    Diabetologia; 2013 Dec; 56(12):2619-28. PubMed ID: 24013783
    [TBL] [Abstract][Full Text] [Related]  

  • 27. CDKAL1-related single nucleotide polymorphisms are associated with insulin resistance in a cross-sectional cohort of Greek children.
    Rask-Andersen M; Philippot G; Moschonis G; Dedoussis G; Manios Y; Marcus C; Fredriksson R; Schiöth HB
    PLoS One; 2014; 9(4):e93193. PubMed ID: 24695378
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Functional loss of Cdkal1, a novel tRNA modification enzyme, causes the development of type 2 diabetes.
    Wei FY; Tomizawa K
    Endocr J; 2011; 58(10):819-25. PubMed ID: 21908934
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Variants of CDKAL1 and IGF2BP2 affect first-phase insulin secretion during hyperglycaemic clamps.
    Groenewoud MJ; Dekker JM; Fritsche A; Reiling E; Nijpels G; Heine RJ; Maassen JA; Machicao F; Schäfer SA; Häring HU; 't Hart LM; van Haeften TW
    Diabetologia; 2008 Sep; 51(9):1659-63. PubMed ID: 18618095
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Association analysis of variation in/near FTO, CDKAL1, SLC30A8, HHEX, EXT2, IGF2BP2, LOC387761, and CDKN2B with type 2 diabetes and related quantitative traits in Pima Indians.
    Rong R; Hanson RL; Ortiz D; Wiedrich C; Kobes S; Knowler WC; Bogardus C; Baier LJ
    Diabetes; 2009 Feb; 58(2):478-88. PubMed ID: 19008344
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Positive association between variations in CDKAL1 and type 2 diabetes in Han Chinese individuals.
    Liu Y; Yu L; Zhang D; Chen Z; Zhou DZ; Zhao T; Li S; Wang T; Hu X; Feng GY; Zhang ZF; He L; Xu H
    Diabetologia; 2008 Nov; 51(11):2134-7. PubMed ID: 18766326
    [No Abstract]   [Full Text] [Related]  

  • 32. The association analysis polymorphism of CDKAL1 and diabetic retinopathy in Chinese Han population.
    Liu NJ; Xiong Q; Wu HH; Li YL; Yang Z; Tao XM; Du YP; Lu B; Hu RM; Wang XC; Wen J
    Int J Ophthalmol; 2016; 9(5):707-12. PubMed ID: 27275426
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Association between insulin secretion, insulin sensitivity and type 2 diabetes susceptibility variants identified in genome-wide association studies.
    Ruchat SM; Elks CE; Loos RJ; Vohl MC; Weisnagel SJ; Rankinen T; Bouchard C; Pérusse L
    Acta Diabetol; 2009 Sep; 46(3):217-26. PubMed ID: 19082521
    [TBL] [Abstract][Full Text] [Related]  

  • 34. The MTMR9 rs2293855 polymorphism is associated with glucose tolerance, insulin secretion, insulin sensitivity and increased risk of prediabetes.
    Tang L; Tong Y; Cao H; Xie S; Yang Q; Zhang F; Zhu Q; Huang L; Lü Q; Yang Y; Li D; Chen M; Yu C; Jin W; Yuan Y; Tong N
    Gene; 2014 Aug; 546(2):150-5. PubMed ID: 24937802
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Implication of genetic variants near SLC30A8, HHEX, CDKAL1, CDKN2A/B, IGF2BP2, FTO, TCF2, KCNQ1, and WFS1 in type 2 diabetes in a Chinese population.
    Han X; Luo Y; Ren Q; Zhang X; Wang F; Sun X; Zhou X; Ji L
    BMC Med Genet; 2010 May; 11():81. PubMed ID: 20509872
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Association study of genetic variants of 17 diabetes-related genes/loci and cardiovascular risk and diabetic nephropathy in the Chinese She population.
    Chen G; Xu Y; Lin Y; Lai X; Yao J; Huang B; Chen Z; Huang H; Fu X; Lin L; Lai S; Wen J
    J Diabetes; 2013 Jun; 5(2):136-45. PubMed ID: 23298195
    [TBL] [Abstract][Full Text] [Related]  

  • 37. A Novel Polymorphism (rs35612982) in CDKAL1 Is a Risk Factor of Type 2 Diabetes: A Case-Control Study.
    Tian Y; Xu J; Huang T; Cui J; Zhang W; Song W; Chen H; Huang P; Yang S; Wang L; He X; Wang L; Cui W
    Kidney Blood Press Res; 2019; 44(6):1313-1326. PubMed ID: 31639799
    [TBL] [Abstract][Full Text] [Related]  

  • 38. [Association analysis of genetic polymorphisms of TCF7L2, CDKAL1, SLC30A8, HHEX genes and microvascular complications of type 2 diabetes mellitus].
    Fu LL; Lin Y; Yang ZL; Yin YB
    Zhonghua Yi Xue Yi Chuan Xue Za Zhi; 2012 Apr; 29(2):194-9. PubMed ID: 22487833
    [TBL] [Abstract][Full Text] [Related]  

  • 39. PPARG, KCNJ11, CDKAL1, CDKN2A-CDKN2B, IDE-KIF11-HHEX, IGF2BP2 and SLC30A8 are associated with type 2 diabetes in a Chinese population.
    Hu C; Zhang R; Wang C; Wang J; Ma X; Lu J; Qin W; Hou X; Wang C; Bao Y; Xiang K; Jia W
    PLoS One; 2009 Oct; 4(10):e7643. PubMed ID: 19862325
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Polycystic ovary syndrome is not associated with polymorphisms of the TCF7L2, CDKAL1, HHEX, KCNJ11, FTO and SLC30A8 genes.
    Kim JJ; Choi YM; Cho YM; Hong MA; Chae SJ; Hwang KR; Hwang SS; Yoon SH; Moon SY
    Clin Endocrinol (Oxf); 2012 Sep; 77(3):439-45. PubMed ID: 22443257
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 7.