These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
443 related articles for article (PubMed ID: 26119589)
1. Biomechanical and biophysical environment of bone from the macroscopic to the pericellular and molecular level. Ren L; Yang P; Wang Z; Zhang J; Ding C; Shang P J Mech Behav Biomed Mater; 2015 Oct; 50():104-22. PubMed ID: 26119589 [TBL] [Abstract][Full Text] [Related]
2. Effects of loading frequency on the functional adaptation of trabeculae predicted by bone remodeling simulation. Kameo Y; Adachi T; Hojo M J Mech Behav Biomed Mater; 2011 Aug; 4(6):900-8. PubMed ID: 21616471 [TBL] [Abstract][Full Text] [Related]
3. Mathematically modeling fluid flow and fluid shear stress in the canaliculi of a loaded osteon. Wu X; Wang N; Wang Z; Yu W; Wang Y; Guo Y; Chen W Biomed Eng Online; 2016 Dec; 15(Suppl 2):149. PubMed ID: 28155688 [TBL] [Abstract][Full Text] [Related]
4. Would increased interstitial fluid flow through in situ mechanical stimulation enhance bone remodeling? Letechipia JE; Alessi A; Rodriguez G; Asbun J Med Hypotheses; 2010 Aug; 75(2):196-8. PubMed ID: 20227836 [TBL] [Abstract][Full Text] [Related]
5. A comparison of strain and fluid shear stress in stimulating bone cell responses--a computational and experimental study. McGarry JG; Klein-Nulend J; Mullender MG; Prendergast PJ FASEB J; 2005 Mar; 19(3):482-4. PubMed ID: 15625080 [TBL] [Abstract][Full Text] [Related]
7. Microfluidic enhancement of intramedullary pressure increases interstitial fluid flow and inhibits bone loss in hindlimb suspended mice. Kwon RY; Meays DR; Tang WJ; Frangos JA J Bone Miner Res; 2010 Aug; 25(8):1798-807. PubMed ID: 20200992 [TBL] [Abstract][Full Text] [Related]
8. Skeletal adaptation to intramedullary pressure-induced interstitial fluid flow is enhanced in mice subjected to targeted osteocyte ablation. Kwon RY; Meays DR; Meilan AS; Jones J; Miramontes R; Kardos N; Yeh JC; Frangos JA PLoS One; 2012; 7(3):e33336. PubMed ID: 22413015 [TBL] [Abstract][Full Text] [Related]
9. Deformation-induced hierarchical flows and drag forces in bone canaliculi and matrix microporosity. Mak AF; Huang DT; Zhang JD; Tong P J Biomech; 1997 Jan; 30(1):11-8. PubMed ID: 8970919 [TBL] [Abstract][Full Text] [Related]
10. Study on the biomechanical responses of the loaded bone in macroscale and mesoscale by multiscale poroelastic FE analysis. Yu W; Wu X; Cen H; Guo Y; Li C; Wang Y; Qin Y; Chen W Biomed Eng Online; 2019 Dec; 18(1):122. PubMed ID: 31870380 [TBL] [Abstract][Full Text] [Related]
12. Mechanotransduction in cortical bone and the role of piezoelectricity: a numerical approach. Stroe MC; Crolet JM; Racila M Comput Methods Biomech Biomed Engin; 2013; 16(2):119-29. PubMed ID: 21916677 [TBL] [Abstract][Full Text] [Related]
13. Numerical simulation of streaming potentials due to deformation-induced hierarchical flows in cortical bone. Mak AF; Zhang JD J Biomech Eng; 2001 Feb; 123(1):66-70. PubMed ID: 11277304 [TBL] [Abstract][Full Text] [Related]
14. Responses of bone cells to biomechanical forces in vitro. Burger EH; Klein-Nulen J Adv Dent Res; 1999 Jun; 13():93-8. PubMed ID: 11276754 [TBL] [Abstract][Full Text] [Related]
15. Trabecular bone remodelling simulation considering osteocytic response to fluid-induced shear stress. Adachi T; Kameo Y; Hojo M Philos Trans A Math Phys Eng Sci; 2010 Jun; 368(1920):2669-82. PubMed ID: 20439268 [TBL] [Abstract][Full Text] [Related]
16. Bone tissue engineering: the role of interstitial fluid flow. Hillsley MV; Frangos JA Biotechnol Bioeng; 1994 Mar; 43(7):573-81. PubMed ID: 11540959 [TBL] [Abstract][Full Text] [Related]
17. Analysis of avian bone response to mechanical loading-Part one: Distribution of bone fluid shear stress induced by bending and axial loading. Mi LY; Fritton SP; Basu M; Cowin SC Biomech Model Mechanobiol; 2005 Nov; 4(2-3):118-31. PubMed ID: 16254728 [TBL] [Abstract][Full Text] [Related]
18. Microgravity and bone cell mechanosensitivity. Klein-Nulend J; Bacabac RG; Veldhuijzen JP; Van Loon JJ Adv Space Res; 2003; 32(8):1551-9. PubMed ID: 15000126 [TBL] [Abstract][Full Text] [Related]
19. Mechanotransduction and the functional response of bone to mechanical strain. Duncan RL; Turner CH Calcif Tissue Int; 1995 Nov; 57(5):344-58. PubMed ID: 8564797 [TBL] [Abstract][Full Text] [Related]
20. Biomechanical concepts of fracture healing in weight-bearing long bones. Ulstrup AK Acta Orthop Belg; 2008 Jun; 74(3):291-302. PubMed ID: 18686452 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]