BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

215 related articles for article (PubMed ID: 26119790)

  • 1. Accumulation of γ-aminobutyric acid in soybean by hypoxia germination and freeze-thawing incubation.
    Yang R; Feng L; Wang S; Yu N; Gu Z
    J Sci Food Agric; 2016 Apr; 96(6):2090-6. PubMed ID: 26119790
    [TBL] [Abstract][Full Text] [Related]  

  • 2. The mechanism of freeze-thawing induced accumulation of γ-aminobutyric acid in germinated soybean.
    Yang R; Hui Q; Feng X; Feng L; Gu Z; Wang P
    J Sci Food Agric; 2020 Feb; 100(3):1099-1105. PubMed ID: 31667840
    [TBL] [Abstract][Full Text] [Related]  

  • 3. GABA shunt and polyamine degradation pathway on γ-aminobutyric acid accumulation in germinating fava bean (Vicia faba L.) under hypoxia.
    Yang R; Guo Q; Gu Z
    Food Chem; 2013 Jan; 136(1):152-9. PubMed ID: 23017406
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Sequence analysis of diamine oxidase gene from fava bean and its expression related to γ-aminobutyric acid accumulation in seeds germinating under hypoxia-NaCl stress.
    Yang R; Yin Y; Guo L; Han Y; Gu Z
    J Sci Food Agric; 2014 Jun; 94(8):1585-91. PubMed ID: 24170570
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Factors influencing diamine oxidase activity and γ-aminobutyric acid content of fava bean (Vicia faba L.) during germination.
    Yang R; Chen H; Gu Z
    J Agric Food Chem; 2011 Nov; 59(21):11616-20. PubMed ID: 21942768
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Effects of ABA and CaCl₂ on GABA accumulation in fava bean germinating under hypoxia-NaCl stress.
    Yang R; Hui Q; Gu Z
    Biosci Biotechnol Biochem; 2016; 80(3):540-6. PubMed ID: 26644273
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Effects of cultivar and culture conditions on gamma-aminobutyric acid accumulation in germinated fava beans (Vicia faba L.).
    Li Y; Bai Q; Jin X; Wen H; Gu Z
    J Sci Food Agric; 2010 Jan; 90(1):52-7. PubMed ID: 20355011
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Characterization of glutamate decarboxylase mediating gamma-amino butyric acid increase in the early germination stage of soybean (Glycine max [L.] Merr).
    Matsuyama A; Yoshimura K; Shimizu C; Murano Y; Takeuchi H; Ishimoto M
    J Biosci Bioeng; 2009 May; 107(5):538-43. PubMed ID: 19393555
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Improvement of Chia Seeds with Antioxidant Activity, GABA, Essential Amino Acids, and Dietary Fiber by Controlled Germination Bioprocess.
    Gómez-Favela MA; Gutiérrez-Dorado R; Cuevas-Rodríguez EO; Canizalez-Román VA; Del Rosario León-Sicairos C; Milán-Carrillo J; Reyes-Moreno C
    Plant Foods Hum Nutr; 2017 Dec; 72(4):345-352. PubMed ID: 28900797
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Enhancing Contents of γ-Aminobutyric Acid (GABA) and Other Micronutrients in Dehulled Rice during Germination under Normoxic and Hypoxic Conditions.
    Ding J; Yang T; Feng H; Dong M; Slavin M; Xiong S; Zhao S
    J Agric Food Chem; 2016 Feb; 64(5):1094-102. PubMed ID: 26765954
    [TBL] [Abstract][Full Text] [Related]  

  • 11. [Effects of exogenous gamma-aminobutyric acid on polyamine metabolism of melon seedlings under hypoxia stress].
    Fan LQ; Yang LW; Gao HB; Wu XL; Xia QP; Gong BB
    Ying Yong Sheng Tai Xue Bao; 2012 Jun; 23(6):1599-606. PubMed ID: 22937649
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Accumulating pathways of γ-aminobutyric acid during anaerobic and aerobic sequential incubations in fresh tea leaves.
    Wu QY; Ma SZ; Zhang WW; Yao KB; Chen L; Zhao F; Zhuang YQ
    Food Chem; 2018 Feb; 240():1081-1086. PubMed ID: 28946226
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Molecular Mechanisms Underlying γ-Aminobutyric Acid (GABA) Accumulation in Giant Embryo Rice Seeds.
    Zhao GC; Xie MX; Wang YC; Li JY
    J Agric Food Chem; 2017 Jun; 65(24):4883-4889. PubMed ID: 28587460
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Isoflavone contents in germinated soybean seeds.
    Zhu D; Hettiarachchy NS; Horax R; Chen P
    Plant Foods Hum Nutr; 2005 Sep; 60(3):147-51. PubMed ID: 16187018
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Maximising the phytochemical content and antioxidant activity of Ecuadorian brown rice sprouts through optimal germination conditions.
    Cáceres PJ; Martínez-Villaluenga C; Amigo L; Frias J
    Food Chem; 2014; 152():407-14. PubMed ID: 24444955
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Enhancing gamma-aminobutyric acid content in germinated brown rice by repeated treatment of soaking and incubation.
    Thitinunsomboon S; Keeratipibul S; Boonsiriwit A
    Food Sci Technol Int; 2013 Feb; 19(1):25-33. PubMed ID: 23345323
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Ca
    Yang R; Guo Y; Wang S; Gu Z
    J Food Drug Anal; 2015 Jun; 23(2):287-293. PubMed ID: 28911384
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Hypoxia interferes with ABA metabolism and increases ABA sensitivity in embryos of dormant barley grains.
    Benech-Arnold RL; Gualano N; Leymarie J; Côme D; Corbineau F
    J Exp Bot; 2006; 57(6):1423-30. PubMed ID: 16547124
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Dynamic changes in gamma-aminobutyric acid and glutamate decarboxylase activity in oats (Avena nuda L.) during steeping and germination.
    Xu JG; Hu QP; Duan JL; Tian CR
    J Agric Food Chem; 2010 Sep; 58(17):9759-63. PubMed ID: 20695426
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Higher accumulation of gamma-aminobutyric acid induced by salt stress through stimulating the activity of diamine oxidases in Glycine max (L.) Merr. roots.
    Xing SG; Jun YB; Hau ZW; Liang LY
    Plant Physiol Biochem; 2007 Aug; 45(8):560-6. PubMed ID: 17624796
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 11.