These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

174 related articles for article (PubMed ID: 26120033)

  • 1. RNA Binding Protein Nanos2 Organizes Post-transcriptional Buffering System to Retain Primitive State of Mouse Spermatogonial Stem Cells.
    Zhou Z; Shirakawa T; Ohbo K; Sada A; Wu Q; Hasegawa K; Saba R; Saga Y
    Dev Cell; 2015 Jul; 34(1):96-107. PubMed ID: 26120033
    [TBL] [Abstract][Full Text] [Related]  

  • 2. The RNA-binding protein NANOS2 is required to maintain murine spermatogonial stem cells.
    Sada A; Suzuki A; Suzuki H; Saga Y
    Science; 2009 Sep; 325(5946):1394-8. PubMed ID: 19745153
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Spermatogonial stem cell quest: nanos2, marker of a subpopulation of undifferentiated A spermatogonia in trout testis.
    Bellaiche J; Lareyre JJ; Cauty C; Yano A; Allemand I; Le Gac F
    Biol Reprod; 2014 Apr; 90(4):79. PubMed ID: 24554733
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Lin28a promotes self-renewal and proliferation of dairy goat spermatogonial stem cells (SSCs) through regulation of mTOR and PI3K/AKT.
    Ma F; Zhou Z; Li N; Zheng L; Wu C; Niu B; Tang F; He X; Li G; Hua J
    Sci Rep; 2016 Dec; 6():38805. PubMed ID: 27941834
    [TBL] [Abstract][Full Text] [Related]  

  • 5. [Nanos2 in the male reproductive system: Progress in studies].
    Huang ZY; Zhang XS
    Zhonghua Nan Ke Xue; 2018 Jun; 24(6):558-561. PubMed ID: 30173464
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Expression and intracellular localization of Nanos2-homologue protein in primordial germ cells and spermatogonial stem cells.
    Pandey V; Tripathi A; Dubey PK
    Zygote; 2019 Apr; 27(2):82-88. PubMed ID: 30888312
    [TBL] [Abstract][Full Text] [Related]  

  • 7. BMP4/Smad signaling pathway induces the differentiation of mouse spermatogonial stem cells via upregulation of Sohlh2.
    Li Y; Zhang Y; Zhang X; Sun J; Hao J
    Anat Rec (Hoboken); 2014 Apr; 297(4):749-57. PubMed ID: 24591295
    [TBL] [Abstract][Full Text] [Related]  

  • 8. miR-34c enhances mouse spermatogonial stem cells differentiation by targeting Nanos2.
    Yu M; Mu H; Niu Z; Chu Z; Zhu H; Hua J
    J Cell Biochem; 2014 Feb; 115(2):232-42. PubMed ID: 24038201
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Essential role of mouse Dead end1 in the maintenance of spermatogonia.
    Niimi Y; Imai A; Nishimura H; Yui K; Kikuchi A; Koike H; Saga Y; Suzuki A
    Dev Biol; 2019 Jan; 445(1):103-112. PubMed ID: 30439356
    [TBL] [Abstract][Full Text] [Related]  

  • 10. NEDD4 controls spermatogonial stem cell homeostasis and stress response by regulating messenger ribonucleoprotein complexes.
    Zhou Z; Kawabe H; Suzuki A; Shinmyozu K; Saga Y
    Nat Commun; 2017 Jun; 8():15662. PubMed ID: 28585553
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Spermatogonial stem cell self-renewal requires OCT4, a factor downregulated during retinoic acid-induced differentiation.
    Dann CT; Alvarado AL; Molyneux LA; Denard BS; Garbers DL; Porteus MH
    Stem Cells; 2008 Nov; 26(11):2928-37. PubMed ID: 18719224
    [TBL] [Abstract][Full Text] [Related]  

  • 12. miR-34c disrupts spermatogonial stem cell homeostasis in cryptorchid testes by targeting Nanos2.
    Huang Z; Tang D; Gao J; Dou X; Cheng P; Peng D; Zhang Y; Mao J; Zhang L; Zhang X
    Reprod Biol Endocrinol; 2018 Oct; 16(1):97. PubMed ID: 30322389
    [TBL] [Abstract][Full Text] [Related]  

  • 13. NANOS2 acts downstream of glial cell line-derived neurotrophic factor signaling to suppress differentiation of spermatogonial stem cells.
    Sada A; Hasegawa K; Pin PH; Saga Y
    Stem Cells; 2012 Feb; 30(2):280-91. PubMed ID: 22102605
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Mammalian target of rapamycin complex 1 (mTORC1) Is required for mouse spermatogonial differentiation in vivo.
    Busada JT; Niedenberger BA; Velte EK; Keiper BD; Geyer CB
    Dev Biol; 2015 Nov; 407(1):90-102. PubMed ID: 26254600
    [TBL] [Abstract][Full Text] [Related]  

  • 15. [Regulatory effect of GDNF on the proliferation and differentiation of mammalian spermatogonial stem cells].
    Li XY; Liu YJ; Hou LL; Wang KG; Guan WJ; Ma YH
    Zhonghua Nan Ke Xue; 2011 Jul; 17(7):628-33. PubMed ID: 21823348
    [TBL] [Abstract][Full Text] [Related]  

  • 16. NANOS2 acts as an intrinsic regulator of gonocytes-to-spermatogonia transition in the murine testes.
    Pui HP; Saga Y
    Mech Dev; 2018 Feb; 149():27-40. PubMed ID: 29339164
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Maintaining the male germline: regulation of spermatogonial stem cells.
    Caires K; Broady J; McLean D
    J Endocrinol; 2010 May; 205(2):133-45. PubMed ID: 20147357
    [TBL] [Abstract][Full Text] [Related]  

  • 18. [Biological properties of spermatogonial stem cell niches].
    Li LL; Liu Y; Jin B; Zhang XM
    Zhonghua Nan Ke Xue; 2012 Apr; 18(4):359-63. PubMed ID: 22574376
    [TBL] [Abstract][Full Text] [Related]  

  • 19. The transition from stem cell to progenitor spermatogonia and male fertility requires the SHP2 protein tyrosine phosphatase.
    Puri P; Phillips BT; Suzuki H; Orwig KE; Rajkovic A; Lapinski PE; King PD; Feng GS; Walker WH
    Stem Cells; 2014 Mar; 32(3):741-53. PubMed ID: 24123360
    [TBL] [Abstract][Full Text] [Related]  

  • 20. The identity and fate decision control of spermatogonial stem cells: where is the point of no return?
    Nagano MC; Yeh JR
    Curr Top Dev Biol; 2013; 102():61-95. PubMed ID: 23287030
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.