BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

183 related articles for article (PubMed ID: 26120099)

  • 1. Resonant dielectrophoresis and electrohydrodynamics for high-sensitivity impedance detection of whole-cell bacteria.
    Couniot N; Francis LA; Flandre D
    Lab Chip; 2015 Aug; 15(15):3183-91. PubMed ID: 26120099
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Lytic enzymes as selectivity means for label-free, microfluidic and impedimetric detection of whole-cell bacteria using ALD-Al2O3 passivated microelectrodes.
    Couniot N; Vanzieleghem T; Rasson J; Van Overstraeten-Schlögel N; Poncelet O; Mahillon J; Francis LA; Flandre D
    Biosens Bioelectron; 2015 May; 67():154-61. PubMed ID: 25149092
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Electrothermal pumping with interdigitated electrodes and resistive heaters.
    Williams SJ; Green NG
    Electrophoresis; 2015 Aug; 36(15):1681-9. PubMed ID: 26010255
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Towards CMOS Integrated Microfluidics Using Dielectrophoretic Immobilization.
    Matbaechi Ettehad H; Yadav RK; Guha S; Wenger C
    Biosensors (Basel); 2019 Jun; 9(2):. PubMed ID: 31195725
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Joule heating effects on electroosmotic flow in insulator-based dielectrophoresis.
    Sridharan S; Zhu J; Hu G; Xuan X
    Electrophoresis; 2011 Sep; 32(17):2274-81. PubMed ID: 21792988
    [TBL] [Abstract][Full Text] [Related]  

  • 6. A 16 × 16 CMOS Capacitive Biosensor Array Towards Detection of Single Bacterial Cell.
    Couniot N; Francis LA; Flandre D
    IEEE Trans Biomed Circuits Syst; 2016 Apr; 10(2):364-74. PubMed ID: 25974947
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Electrothermal enrichment of submicron particles in an insulator-based dielectrophoretic microdevice.
    Kale A; Song L; Lu X; Yu L; Hu G; Xuan X
    Electrophoresis; 2018 Mar; 39(5-6):887-896. PubMed ID: 29068080
    [TBL] [Abstract][Full Text] [Related]  

  • 8. An impedimetric sensor for monitoring the growth of Staphylococcus epidermidis.
    Oliver LM; Dunlop PS; Byrne JA; Blair IS; Boyle M; McGuigan KG; McAdams ET
    Conf Proc IEEE Eng Med Biol Soc; 2006; 2006():535-8. PubMed ID: 17946403
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Continuous flow nanoparticle concentration using alternating current-electroosmotic flow.
    Hoettges KF; McDonnell MB; Hughes MP
    Electrophoresis; 2014 Feb; 35(4):467-73. PubMed ID: 24166772
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Modeling and development of a low frequency contactless dielectrophoresis (cDEP) platform to sort cancer cells from dilute whole blood samples.
    Sano MB; Caldwell JL; Davalos RV
    Biosens Bioelectron; 2011 Dec; 30(1):13-20. PubMed ID: 21944186
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Enhanced cell trapping throughput using DC-biased AC electric field in a dielectrophoresis-based fluidic device with densely packed silica beads.
    Lewpiriyawong N; Xu G; Yang C
    Electrophoresis; 2018 Mar; 39(5-6):878-886. PubMed ID: 29288585
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Impedimetric detection of bacteria by using a microfluidic chip and silver nanoparticle based signal enhancement.
    Wang R; Xu Y; Sors T; Irudayaraj J; Ren W; Wang R
    Mikrochim Acta; 2018 Feb; 185(3):184. PubMed ID: 29594583
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Nonlinear electrokinetic effects in insulator-based dielectrophoretic systems.
    Wang Q; Dingari NN; Buie CR
    Electrophoresis; 2017 Oct; 38(20):2576-2586. PubMed ID: 28763135
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Bi-directional flow induced by an AC electroosmotic micropump with DC voltage bias.
    Islam N; Reyna J
    Electrophoresis; 2012 Apr; 33(7):1191-7. PubMed ID: 22539322
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Combined dielectrophoretic and impedance system for on-chip controlled bacteria concentration: Application to Escherichia coli.
    Del Moral-Zamora B; Punter-Villagrassa J; Oliva-Brañas AM; Álvarez-Azpeitia JM; Colomer-Farrarons J; Samitier J; Homs-Corbera A; Miribel-Català PL
    Electrophoresis; 2015 May; 36(9-10):1130-41. PubMed ID: 25752513
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Enhancement of electrokinetically driven microfluidic T-mixer using frequency modulated electric field and channel geometry effects.
    Yan D; Yang C; Miao J; Lam Y; Huang X
    Electrophoresis; 2009 Sep; 30(18):3144-52. PubMed ID: 19764063
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Dual frequency dielectrophoresis with interdigitated sidewall electrodes for microfluidic flow-through separation of beads and cells.
    Wang L; Lu J; Marchenko SA; Monuki ES; Flanagan LA; Lee AP
    Electrophoresis; 2009 Mar; 30(5):782-91. PubMed ID: 19197906
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Scaling law analysis of electrohydrodynamics and dielectrophoresis for isomotive dielectrophoresis microfluidic devices.
    Rashed MZ; Green NG; Williams SJ
    Electrophoresis; 2020 Jan; 41(1-2):148-155. PubMed ID: 31677287
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Moving pulsed dielectrophoresis.
    Honegger T; Peyrade D
    Lab Chip; 2013 Apr; 13(8):1538-45. PubMed ID: 23429670
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Electrode-based AC electrokinetics of proteins: A mini-review.
    Laux EM; Bier FF; Hölzel R
    Bioelectrochemistry; 2018 Apr; 120():76-82. PubMed ID: 29182911
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 10.