BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

366 related articles for article (PubMed ID: 26120101)

  • 41. One-step electrochemical growth of a three-dimensional Sn-Ni@PEO nanotube array as a high performance lithium-ion battery anode.
    Fan X; Dou P; Jiang A; Ma D; Xu X
    ACS Appl Mater Interfaces; 2014 Dec; 6(24):22282-8. PubMed ID: 25423255
    [TBL] [Abstract][Full Text] [Related]  

  • 42. Dual-Phase Lithium Metal Anode Containing a Polysulfide-Induced Solid Electrolyte Interphase and Nanostructured Graphene Framework for Lithium-Sulfur Batteries.
    Cheng XB; Peng HJ; Huang JQ; Zhang R; Zhao CZ; Zhang Q
    ACS Nano; 2015 Jun; 9(6):6373-82. PubMed ID: 26042545
    [TBL] [Abstract][Full Text] [Related]  

  • 43. Pre-lithiation of onion-like carbon/MoS2 nano-urchin anodes for high-performance rechargeable lithium ion batteries.
    Wang Y; Xing G; Han ZJ; Shi Y; Wong JI; Huang ZX; Ostrikov KK; Yang HY
    Nanoscale; 2014 Aug; 6(15):8884-90. PubMed ID: 24962690
    [TBL] [Abstract][Full Text] [Related]  

  • 44. Thin MoS2 nanoflakes encapsulated in carbon nanofibers as high-performance anodes for lithium-ion batteries.
    Zhao C; Kong J; Yao X; Tang X; Dong Y; Phua SL; Lu X
    ACS Appl Mater Interfaces; 2014 May; 6(9):6392-8. PubMed ID: 24701987
    [TBL] [Abstract][Full Text] [Related]  

  • 45. Carbon nanofibers decorated with molybdenum disulfide nanosheets: synergistic lithium storage and enhanced electrochemical performance.
    Zhou F; Xin S; Liang HW; Song LT; Yu SH
    Angew Chem Int Ed Engl; 2014 Oct; 53(43):11552-6. PubMed ID: 25213751
    [TBL] [Abstract][Full Text] [Related]  

  • 46. Understanding Structure-Function Relationship in Hybrid Co3O4-Fe2O3/C Lithium-Ion Battery Electrodes.
    Sultana I; Rahman MM; Ramireddy T; Sharma N; Poddar D; Khalid A; Zhang H; Chen Y; Glushenkov AM
    ACS Appl Mater Interfaces; 2015 Sep; 7(37):20736-44. PubMed ID: 26340711
    [TBL] [Abstract][Full Text] [Related]  

  • 47. Preparation of nanostructured and nanosheets of MoS
    Amini M; Ramazani S A A; Faghihi M; Fattahpour S
    Ultrason Sonochem; 2017 Nov; 39():188-196. PubMed ID: 28732935
    [TBL] [Abstract][Full Text] [Related]  

  • 48. Electrochemical Reaction Mechanism of the MoS
    Zhang L; Sun D; Kang J; Feng J; Bechtel HA; Wang LW; Cairns EJ; Guo J
    Nano Lett; 2018 Feb; 18(2):1466-1475. PubMed ID: 29327926
    [TBL] [Abstract][Full Text] [Related]  

  • 49. Fabrication of 3D hierarchical MoS₂/polyaniline and MoS₂/C architectures for lithium-ion battery applications.
    Hu L; Ren Y; Yang H; Xu Q
    ACS Appl Mater Interfaces; 2014 Aug; 6(16):14644-52. PubMed ID: 25100439
    [TBL] [Abstract][Full Text] [Related]  

  • 50. Nanocarbon networks for advanced rechargeable lithium batteries.
    Xin S; Guo YG; Wan LJ
    Acc Chem Res; 2012 Oct; 45(10):1759-69. PubMed ID: 22953777
    [TBL] [Abstract][Full Text] [Related]  

  • 51. Mechanism of lithium storage in MoS2 and the feasibility of using Li2S/Mo nanocomposites as cathode materials for lithium-sulfur batteries.
    Fang X; Guo X; Mao Y; Hua C; Shen L; Hu Y; Wang Z; Wu F; Chen L
    Chem Asian J; 2012 May; 7(5):1013-7. PubMed ID: 22374889
    [TBL] [Abstract][Full Text] [Related]  

  • 52. Sulfur-graphene nanostructured cathodes via ball-milling for high-performance lithium-sulfur batteries.
    Xu J; Shui J; Wang J; Wang M; Liu HK; Dou SX; Jeon IY; Seo JM; Baek JB; Dai L
    ACS Nano; 2014 Oct; 8(10):10920-30. PubMed ID: 25290080
    [TBL] [Abstract][Full Text] [Related]  

  • 53. ALD TiO
    Ren W; Zhou W; Zhang H; Cheng C
    ACS Appl Mater Interfaces; 2017 Jan; 9(1):487-495. PubMed ID: 27966859
    [TBL] [Abstract][Full Text] [Related]  

  • 54. Economical synthesis and promotion of the electrochemical performance of silicon nanowires as anode material in Li-ion batteries.
    Xiao Y; Hao D; Chen H; Gong Z; Yang Y
    ACS Appl Mater Interfaces; 2013 Mar; 5(5):1681-7. PubMed ID: 23379363
    [TBL] [Abstract][Full Text] [Related]  

  • 55. Graphene-like MoS₂/graphene composites: cationic surfactant-assisted hydrothermal synthesis and electrochemical reversible storage of lithium.
    Huang G; Chen T; Chen W; Wang Z; Chang K; Ma L; Huang F; Chen D; Lee JY
    Small; 2013 Nov; 9(21):3693-703. PubMed ID: 23766240
    [TBL] [Abstract][Full Text] [Related]  

  • 56. Ferric chloride-graphite intercalation compounds as anode materials for Li-ion batteries.
    Wang L; Zhu Y; Guo C; Zhu X; Liang J; Qian Y
    ChemSusChem; 2014 Jan; 7(1):87-91. PubMed ID: 24339264
    [TBL] [Abstract][Full Text] [Related]  

  • 57. Instant gelation synthesis of 3D porous MoS2@C nanocomposites for lithium ion batteries.
    Fei L; Xu Y; Wu X; Chen G; Li Y; Li B; Deng S; Smirnov S; Fan H; Luo H
    Nanoscale; 2014 Apr; 6(7):3664-9. PubMed ID: 24567121
    [TBL] [Abstract][Full Text] [Related]  

  • 58. Energy-Density Improvement in Li-Ion Rechargeable Batteries Based on LiCoO
    Bae KY; Cho SH; Kim BH; Son BD; Yoon WY
    Materials (Basel); 2019 Jun; 12(12):. PubMed ID: 31238544
    [TBL] [Abstract][Full Text] [Related]  

  • 59. MoS2 Nanosheets Hosted in Polydopamine-Derived Mesoporous Carbon Nanofibers as Lithium-Ion Battery Anodes: Enhanced MoS2 Capacity Utilization and Underlying Mechanism.
    Kong J; Zhao C; Wei Y; Lu X
    ACS Appl Mater Interfaces; 2015 Nov; 7(43):24279-87. PubMed ID: 26461838
    [TBL] [Abstract][Full Text] [Related]  

  • 60. Guest-host interactions and their impacts on structure and performance of nano-MoS2.
    Wang X; Guan Z; Li Y; Wang Z; Chen L
    Nanoscale; 2015 Jan; 7(2):637-41. PubMed ID: 25423578
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 19.